# **Service Manual**

# AVEA Ventilator Systems

# **Revision History**

| Date        | Revision   | Pages | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| August 2002 | Revision A | All   | Released Engineering Document<br>Control ECO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| July 2003   | Revision B | All   | Add Exception button and<br>Exception screen to Error Log<br>screen. Add list of error codes.<br>Add OVP kits & instructions.<br>Add Software upgrade<br>instructions. Add Heliox Smart<br>connector instructions. Add<br>Compressor upgrade<br>instructions. Add cart instructions<br>(both). Add external battery<br>pack instructions. Add Insp &<br>Exp transducer Cal instructions.<br>Add ref to Communications<br>Protocol. Add unpacking &<br>setup instructions.<br>Reorganize chapters, add<br>chapter 3, add chapter 5 (OVP),<br>add software upgrade info<br>(chapter 6), add chapter 9. add |
|             |            |       | chapter 10, add appendix D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# **Notices**

### **Copyright Notice**

Copyright © 2003 VIASYS Healthcare, Critical Care Division, California.

This work is protected under Title 17 of the U.S. Code and is the sole property of the Company. No part of this document may be copied or otherwise reproduced, or stored in any electronic information retrieval system, except as specifically permitted under U.S. Copyright law, without the prior written consent of the Company. For more information, contact:

| World He  | adquarters          | European Office                 |
|-----------|---------------------|---------------------------------|
| 1100 Bird | Center Drive        | Rembrandtlaan 1b                |
| Palm Spri | ngs, CA 92262-8099  | 3723 BG Bilthoven               |
| U.S.A.    |                     | P.O. Box 299, 3720 AG Bilthoven |
| Phone:    | (760) 778-7200      | The Netherlands                 |
|           | (800) 328-4139      | Phone: (31) 30 2289 711         |
| Fax:      | (760) 778-7274      | Fax: (31) 30 2286 244           |
| www.Vias  | sysCriticalCare.com |                                 |

### **Trademark Notices**

AVEA<sup>®</sup> is a registered trademark of VIASYS Healthcare, Critical Care Division in the U.S. and some other countries. All other brand names and product names mentioned in this manual are trademarks, registered trademarks, or trade names of their respective holders.

# **EMC** Notice

This equipment generates, uses, and can radiate radio frequency energy. If not installed and used in accordance with the instructions in this manual, electromagnetic interference may result. The equipment has been tested and found to comply with the limits set forth in EN60601-1-2 for Medical Products. These limits provide reasonable protection against electromagnetic interference when operated in the intended use environments described in this manual.

The ventilator has been tested to conform to the following specifications:

MIL-STD-461D:1993, MIL-STD-462D:1993, EN55011:1991, IEC 1000-4-2:1994, IEC 1000-4-3:1994, IEC 1000-4-5:1994, QUASI-STATIC:1993

This ventilator is also designed and manufactured to comply with the safety requirements of IEC 601-1, IEC 601-2-12, CAN/CSA-C22.2 No. 601.1-M90, and UL 2601-1.

### **MRI Notice**

This equipment contains electromagnetic components whose operation can be affected by intense electromagnetic fields.

Do not operate the ventilator in an MRI environment or in the vicinity of high-frequency surgical diathermy equipment, defibrillators, or short-wave therapy equipment. Electromagnetic interference could disrupt the operation of the ventilator.

### **Intended Use Notice**

The AVEA Ventilators are designed to provide ventilator support for the critical care management of infant, pediatric or adult patients with compromised lung function. They are intended to provide continuous respiratory support in an institutional health care environment. **They should only be operated by properly trained clinical personnel, under the direction of a physician.** 

# **Regulatory Notice**

Federal law restricts the sale of this device except by or on order of a physician.

### **IEC Classification**

| Type of Equipment: | Medical Equipment, Class 1 type B      |
|--------------------|----------------------------------------|
|                    | Adult/Pediatric/Infant Lung Ventilator |

### **Declaration of Conformity Notice**

This medical equipment complies with the Medical Device Directive, 93/42/EEC, and the following Technical Standards, to which Conformity is declared:

EN60601-1 EN60601-1-2 ISO 9001, EN 46001

EU Notified Body:

BSI (Reg. No. 0086)

#### Tradenames:

**AVEA Ventilator** 

If you have a question regarding the Declaration of Conformity for this product, please contact VIASYS Healthcare, Critical Care Division at the number given in Appendix A.



# Warranty

THE AVEA<sup>®</sup> ventilator systems are warranted to be free from defects in material and workmanship and to meet the published specifications for TWO (2) years or 16,000 hours, whichever occurs first.

The liability of VIASYS Healthcare, Critical Care Division, (referred to as the Company) under this warranty is limited to replacing, repairing or issuing credit, at the discretion of the Company, for parts that become defective or fail to meet published specifications during the warranty period; the Company will not be liable under this warranty unless (A) the Company is promptly notified in writing by Buyer upon discovery of defects or failure to meet published specifications; (B) the defective unit or part is returned to the Company, transportation charges prepaid by Buyer; (C) the defective unit or part is received by the Company for adjustment no later than four weeks following the last day of the warranty period; and (D) the Company's examination of such unit or part shall disclose, to its satisfaction, that such defects or failures have not been caused by misuse, neglect, improper installation, unauthorized repair, alteration or accident.

Any authorization of the Company for repair or alteration by the Buyer must be in writing to prevent voiding the warranty. In no event shall the Company be liable to the Buyer for loss of profits, loss of use, consequential damage or damages of any kind based upon a claim for breach of warranty, other than the purchase price of any defective product covered hereunder.

The Company warranties as herein and above set forth shall not be enlarged, diminished or affected by, and no obligation or liability shall arise or grow out of the rendering of technical advice or service by the Company or its agents in connection with the Buyer's order of the products furnished hereunder.

### Limitation of Liabilities

This warranty does not cover normal maintenance such as cleaning, adjustment or lubrication and updating of equipment parts. This warranty shall be void and shall not apply if the equipment is used with accessories or parts not manufactured by the Company or authorized for use in writing by the Company or if the equipment is not maintained in accordance with the prescribed schedule of maintenance.

The warranty stated above shall extend for a period of TWO (2) years from date of shipment or 16,000 hours of use, whichever occurs first, with the following exceptions:

- 1. Components for monitoring of physical variables such as temperature, pressure, or flow are warranted for ninety (90) days from date of receipt.
- 2. Elastomeric components and other parts or components subject to deterioration, over which the Company has no control, are warranted for sixty (60) days from date of receipt.
- 3. Internal batteries are warranted for ninety (90) days from the date of receipt.

The foregoing is in lieu of any warranty, expressed or implied, including, without limitation, any warranty of merchantability, except as to title, and can be amended only in writing by a duly authorized representative of the Company.

# Contents

| Revision History                 | 3  |
|----------------------------------|----|
| Notices                          | 4  |
| Copyright Notice                 | 4  |
| Trademark Notices                | 4  |
| EMC Notice                       | 4  |
| MRI Notice                       | 5  |
| Intended Use Notice              | 5  |
| Regulatory Notice                | 5  |
| IEC Classification               | 5  |
| Declaration of Conformity Notice | 5  |
| Warranty                         | 6  |
| Limitation of Liabilities        | 6  |
| Chapter 1 Introduction           | 19 |
| Safety Information               | 19 |
| Terms                            | 19 |
| Warnings                         | 19 |
| Cautions                         | 20 |
| Equipment Symbols                | 22 |
| Chapter 2 Theory of Operation    | 27 |
| General Description              | 27 |
| High Level Design                | 29 |
| Detail Design                    | 30 |
| Detail Design                    | 31 |
| User Interface Module (UIM)      | 31 |
| Pneumatics Module                | 34 |
| Hour Meter                       | 37 |
| Heated Expiratory System         | 38 |
| Fan                              | 38 |
| Compressor System (Optional)     | 38 |
| Nebulizer System                 | 39 |

| Enhanced Patient Monitoring PCB (Optional-EPM) – Future Software Option         |    |
|---------------------------------------------------------------------------------|----|
| Chapter 3 Installation Instructions                                             | 41 |
| Stand Assembly                                                                  | 41 |
| Basic Stand Assembly Instructions (P/N 15986)                                   | 41 |
| Comprehensive Stand Assembly Instructions (P/N 33976)                           | 43 |
| External Battery Installation Procedures (P/N 11316)                            | 44 |
| "E" Cylinder Bracket Assembly Instructions                                      | 52 |
| Assembly Instructions for Basic Stand Bracket                                   | 52 |
| Assembly Instructions for Comprehensive Stand Bracket                           |    |
| AVEA Unpacking Instructions                                                     | 56 |
| Introduction                                                                    | 56 |
| Unpacking                                                                       |    |
| Medical Gas Connector Kit Installation Instructions                             | 58 |
| Air "Smart" Connector Installation Instructions (P/N 51000-40897)               |    |
| Air and Heliox Tethered "Smart" Connector Installation Instructions (P/N 16132) | 61 |
| Heliox "Smart" Connector Installation Instructions (P/N 51000-40918)            | 63 |
| Chapter 4 Assembly and Disassembly                                              | 67 |
| General Instructions and Warnings                                               | 67 |
| Recommended Tools & Equipment                                                   | 67 |
| User Interface Module (UIM) and Top Cover                                       | 68 |
| UIM Removal                                                                     | 68 |
| Installation                                                                    | 70 |
| Gas Delivery Engine P/N 51000-40022                                             | 70 |
| Gas Delivery Engine Removal                                                     | 70 |
| Installation                                                                    | 72 |
| Ventilator wheeled base                                                         | 73 |
| Removal                                                                         | 73 |
| Installation                                                                    | 73 |
| Internal Batteries                                                              | 73 |
| Removal                                                                         | 73 |
| Installation                                                                    | 74 |
| Compressor/Scroll Pump P/N 51000-09750                                          | 75 |
| Removal                                                                         | 75 |

| Installation                                                          | 75 |
|-----------------------------------------------------------------------|----|
| EPM Board P/N 51000-40848                                             |    |
| Removal                                                               |    |
| Installation                                                          | 76 |
| Fan Assembly P/N 15891                                                |    |
| Removal                                                               | 77 |
| Installation                                                          | 77 |
| Power Supply P/N 68273                                                |    |
| Tools Required                                                        |    |
| Removal                                                               |    |
| Installation                                                          | 79 |
| To Clear EPM Board From Workspace During Replacement Of Power Supply: | 80 |
| Exhalation Valve and Flow Sensor Assembly P/N 51000-40076             | 81 |
| Removal                                                               | 81 |
| Installation                                                          | 82 |
| Heater Assembly P/N 51000-40824                                       | 82 |
| Removal                                                               |    |
| Installation                                                          |    |
| Microswitch, Top Cover P/N 68294                                      | 83 |
| Removal                                                               | 83 |
| Installation                                                          |    |
| EMI Shield                                                            | 84 |
| Removal                                                               |    |
| Installation                                                          |    |
| Front Interface Panel P/N 51000-40635                                 | 84 |
| Removal                                                               |    |
| Installation                                                          |    |
| Driver transition board P/N 51000-40829                               | 85 |
| Removal                                                               | 85 |
| Installation                                                          |    |
| Alarm Speaker P/N 51000-40818                                         | 86 |
| Removal                                                               |    |
| Installation                                                          |    |
| Nebulizer P/N 51000-40818                                             | 87 |

| Removal                                                              |     |
|----------------------------------------------------------------------|-----|
| Installation                                                         |     |
| Accumulator P/N 51000-40748                                          | 89  |
| Removal                                                              |     |
| Installation                                                         |     |
| Chapter 5 Operational Verification Procedure (OVP)                   | 91  |
| Set up                                                               | 91  |
| User Verification Tests (UVT)                                        | 91  |
| The POST test                                                        |     |
| Extended Systems Test (EST)                                          |     |
| Manual Alarms Testing                                                |     |
| User Interface Module (UIM) Verification                             | 99  |
| Membrane Switch Tests                                                |     |
| Field replacement and test of the AVEA Compressor Assembly           | 100 |
| Equipment Required                                                   |     |
| Test Procedure                                                       |     |
| Checkout Sheet – AVEA Compressor Replacement                         | 103 |
| Power Indicators and Charging Verification                           | 104 |
| Battery Run Procedure                                                | 104 |
| Air/Oxygen Inlet Pressure Verification                               | 105 |
| Breath Rate Verification                                             | 106 |
| Blending Accuracy Verification                                       | 106 |
| PEEP Verification                                                    | 106 |
| Chapter 6 AVEA Software Upgrade                                      | 107 |
| Requirements                                                         | 107 |
| Copying the Files                                                    | 107 |
| Connecting the AVEA                                                  | 108 |
| Opening the terminal emulation software (HyperTerminal is used here) | 108 |
| Powering up the AVEA                                                 | 112 |
| Checks                                                               | 115 |
| Software Install Verification AVEA Ventilators                       | 116 |
| Installation Verification                                            | 116 |
| Confirmation checks                                                  |     |

| Chapter 7 Calibration                           | 117 |
|-------------------------------------------------|-----|
| Transducer Calibration                          | 117 |
| Equipment Required                              | 117 |
| Calibration setup                               | 118 |
| Accessing the Calibration Screen                | 119 |
| Inspiratory Pressure Calibration                | 119 |
| Wye Flow Sensor                                 | 121 |
| Expiratory Pressure                             | 122 |
| Expiratory Flow                                 | 124 |
| O2 inlet pressure                               | 125 |
| Air inlet Pressure                              | 126 |
| Blended Gas Pressure                            | 127 |
| O2 sensor                                       | 128 |
| O2 Blender and Compressor Calibration           | 129 |
| Chapter 8 Preventative Maintenance              | 131 |
| Routine Maintenance Procedures                  | 131 |
| Replacing the O2 and Air/Heliox filters         | 132 |
| Replacing the Compressor Inlet & Outlet filters | 134 |
| Replacing the Exhalation Diaphragm              | 135 |
| Chapter 9 Troubleshooting                       | 139 |
| If The Ventilator Does not Turn ON              | 139 |
| If a Vent Inop alarm occurs                     | 140 |
| List of Possible Error Codes                    | 141 |
| Chapter 10 Parts Lists                          | 151 |
| Top Assembly Parts List                         | 160 |
| Appendix A Contact & Ordering Information       | 163 |
| How to Call for Service                         | 163 |
| Ordering Parts                                  | 163 |
| Appendix B Diagrams and Schematics              | 165 |
| Pneumatic Schematic, Part Number 51000-09742    | 165 |
| Tubing Diagram, Part Number 51000-40841         | 165 |
| Wiring Diagram, Part Number 51000-40839         | 165 |
| Appendix C Specifications                       | 173 |

| Pneumatic Supply                           | 173 |
|--------------------------------------------|-----|
| Air or Heliox Supply                       |     |
| Oxygen Supply                              |     |
| Electrical Supply                          |     |
| AC Power Supply                            |     |
| DC Power Supply                            |     |
| Data Input / Output                        |     |
| Analog Inputs                              |     |
| Analog Outputs                             |     |
| Digital Communication                      |     |
| Printer                                    |     |
| Remote Nurse Call                          |     |
| Independent Lung Ventilation (ILV)         |     |
| Video Output                               |     |
| Atmospheric & Environmental Specifications |     |
| Temperature and Humidity                   |     |
| Barometric Pressure                        |     |
| Physical Dimensions                        |     |
| Overall Size                               |     |
| Weight                                     |     |
| Accessories                                |     |
| Pall Microbial Filter                      |     |
| Water Trap                                 |     |
| Appendix D Data Communication Protocol     |     |
| Overview                                   |     |
| Physical Requirements                      |     |
| Connection Cable                           |     |
| Communication Settings                     |     |
| Limitations                                |     |
| Packet Format                              |     |
| Packet                                     |     |
| STX                                        |     |
| Payload                                    |     |
| CheckSum                                   |     |

| Payload           |     |
|-------------------|-----|
| Exchange Protocol |     |
| Default           |     |
| Disabled State    |     |
| Service Request   |     |
| Data Request      |     |
| Data as Available |     |
| Glossary          | 199 |
| Index             |     |

# List of Figures

| Figure 2.1 High End Device Modular Diagram            |    |
|-------------------------------------------------------|----|
| Figure 2.2 User Interface Design Module Block Diagram | 31 |
| Figure 2.3 Pneumatics Module Block Diagram            | 34 |
| Figure 2.4 Gas Delivery Engine Block Diagram          |    |
| Figure 3.1 Assembling the Stand                       | 42 |
| Figure 3.2: Bottom of stand                           | 43 |
| FIgure 3.3: Patient breathing gas outlet              | 45 |
| Figure 3.4: Remove gas tank holder                    | 45 |
| Figure 3.5: Drop cable and battery harness            | 46 |
| Figure 3.6: Face Plate                                | 46 |
| Figure 3.7: Threading the cable harness               | 46 |
| Figure 3.8: Placing batteries into the tray           | 47 |
| Figure 3.9: Battery harness                           | 47 |
| Figure 3.10                                           | 48 |
| Figure 3.11                                           | 48 |
| Figure 3.12                                           | 49 |
| Figure 3.13                                           | 49 |
| Figure 3.14                                           | 50 |
| Figure 3.15                                           | 50 |
| Figure 3.16                                           | 51 |
| Figure 3.17                                           | 51 |
| Figure 3.18                                           | 52 |

| Figure 3.19                                              | 53 |
|----------------------------------------------------------|----|
| Figure 3.20                                              | 53 |
| Figure 3.21                                              | 54 |
| Figure 3.22                                              | 54 |
| Figure 3.23                                              | 55 |
| Figure 3.24                                              | 55 |
| Figure 3.25                                              | 55 |
| Figure 3.26                                              | 56 |
| Figure 3.27                                              | 57 |
| Figure 3.28                                              | 57 |
| Figure 3.29                                              | 57 |
| Figure 3.30                                              | 58 |
| Figure 3.31 Figure 3.32                                  | 58 |
| Figure 3.33                                              | 59 |
| Figure 3.34                                              | 60 |
| Figure 3.35                                              | 60 |
| Figure 3.36                                              | 61 |
| Figure 3.37                                              | 62 |
| Figure 3.38                                              | 62 |
| Figure 3.39                                              | 63 |
| Figure 3.40                                              | 64 |
| Figure 3.41                                              | 65 |
| Figure 4.1 Open locking lever                            | 68 |
| Figure 4.2 Remove exhalation filter                      | 68 |
| Figure 4.3 Close locking lever in place                  | 68 |
| Figure 4.4: Screw Removal                                | 69 |
| Figure 4.5: EXH Screw Removal                            | 69 |
| Figure 4.6 G4 and F4 luer connections                    | 71 |
| Figure 4.7 C4 and H4 compression fittings                | 71 |
| Figure 4.8 Gas Engine Connector on Driver Transition PCB | 72 |
| Figure 4.9 Wheeled base showing attachment points        | 73 |
| Figure 4.10 Battery fuse holder & Bracket                | 73 |
| Figure 4.11 Battery Assembly                             | 74 |
| Figure 4.12 Compressor/ Scroll Pump                      | 75 |
| Figure 4.13 EPM Board alignment notches                  | 76 |

| Figure 4.14 Power Supply                                      | 78  |
|---------------------------------------------------------------|-----|
| Figure 4.15 Exhalation Valve and Flow Sensor Assembly         | 81  |
| Figure 4.16 Top Cover Microswitch                             | 83  |
| Figure 4.17 Driver transition board                           | 85  |
| Figure 4.18: Nebulizer Assembly showing ports                 | 88  |
| Figure 5.1                                                    | 92  |
| Figure 5.2                                                    | 92  |
| Figure 5.3                                                    | 92  |
| Figure 5.4                                                    | 93  |
| Figure 5.5                                                    | 104 |
| Figure 5.6                                                    | 105 |
| Figure 5.7                                                    | 105 |
| Figure 6.1: Serial port                                       | 108 |
| Figure 6.2: Hyper Terminal                                    | 109 |
| Figure 6.3: Hyper Terminal Options                            | 110 |
| Figure 6.4: New Connection                                    | 110 |
| Figure 6.5: Connect Using                                     | 111 |
| Figure 6.6: Port Settings                                     | 111 |
| Figure 6.7: Connected                                         | 112 |
| Figure 6.8: Using Hyper Terminal                              | 113 |
| Figure 6.9: Xmodem Transfer                                   | 113 |
| Figure 6.10: Send File                                        | 114 |
| Figure 6.11: Sending a File                                   | 114 |
| Figure 6.12: Confirmation                                     | 115 |
| Figure 7.1 Calibration setup #1 for low pressure gases        | 118 |
| Figure 7.2 Service Functions Screen                           | 119 |
| Figure 7.3 Calibration Menu Screen                            | 119 |
| Figure 7.4 Inspiratory pressure transducer calibration screen | 119 |
| Figure 7.5 Port E4                                            | 120 |
| Figure 7.6                                                    | 120 |
| Figure 7.9 Wye flow sensor calibration screen                 | 121 |
| Figure 7.10                                                   | 121 |
| Figure 7.13 Expiratory Pressure calibration screen            | 122 |
| Figure 7.14                                                   | 122 |
| Figure 7.15 Expiratory Sensor connector location              | 123 |

| Figure 7.16 Expiratory Sensor Connector          |     |
|--------------------------------------------------|-----|
| Figure 7.17 Expiratory Flow Calibration Screen   |     |
| Figure 7.18 O2 Inlet Pressure calibration screen |     |
| Figure 7.19 "Y" high pressure DISS 1290 adapter  |     |
| Figure 7.20 O2 hose connection                   |     |
| Figure 7.21 Air Inlet Calibration screen         |     |
| Figure 7.22 "Y" adapter                          |     |
| Figure 7.23 "Smart" Connector                    |     |
| Figure 7.24 Attaching the smart connector        |     |
| Figure 7.25 Blended Gas Pressure Screen          |     |
| Figure 7.26 Port C2 connection                   |     |
| Figure 7.27 Adapter for accumulator tubing.      |     |
| Figure 7.28 O2 Sensor Calibration Screen         |     |
| Figure 7.29                                      |     |
| Figure 7.30                                      |     |
| Figure 8.1 Rear panel                            |     |
| Figure 8.2 Tool TL-109                           |     |
| Figure 8.3 Removing the filter covers            |     |
| Figure 8.4 Removing the filter                   |     |
| Figure 8.5 Replacing the filter                  |     |
| Figure 8.6 replacing the filter cover            |     |
| Figure 8.7 Compressor and filters                |     |
| Figure 8.8 Exhalation assembly                   |     |
| Figure 8.9 Disengage valve body                  |     |
| Figure 8.10 Membrane seated in the valve body.   |     |
| Figure 8.11 Removing the membrane                |     |
| Figure 8.12 Seating the new membrane             |     |
| Figure 8.13 Insert the flow sensor               |     |
| Figure 8.14 Align rubber elbow.                  |     |
| Figure 8.15                                      |     |
| Figure 9.1 Error log                             |     |
| Figure 9.2 Exception Log                         | 140 |
| Figure 10.1: UIM Front and Rear Bezels           |     |
| Figure 10.2: UIM Detail A                        |     |
| Figure 10.3: UIM Detail B                        | 155 |

| Figure 4.18: Gas Delivery Engine |  |
|----------------------------------|--|
|----------------------------------|--|

# List of Tables

| Table 2.1 AVEA Features                                   | 28  |
|-----------------------------------------------------------|-----|
| Table 4.1: AVEA Power supply specifications               | 79  |
| Table 5.1: Test Setup Requirements                        | 94  |
| Table 5.2: Ventilation Setup                              | 94  |
| Table 5.3: Primary Controls                               | 95  |
| Table 5.4: Advanced Settings                              | 95  |
| Table 5.5: Alarm Settings                                 | 96  |
| Table 5.6: Auxiliary Controls                             | 96  |
| Table 5.7: Test Ventilator: (AVEA Ventilator)             | 101 |
| Table 5.8: FiO2 Readings                                  | 106 |
| Table 7.1: Parts available from VIASYS Healthcare         | 117 |
| Table 9.1: Troubleshooting Power-Up Problems              | 139 |
| Table 9.2: AVEA Mechanical Troubleshooting                | 143 |
| Table 10.1 User Interface Module list of major components | 151 |
| Table 10.2 Gas Delivery Engine Parts List                 | 156 |
| Table 10.3 Top Level Parts List                           | 160 |

17

# Chapter 1 Introduction

# **Safety Information**

Please review the following safety information prior to operating the ventilator. Attempting to operate the ventilator without fully understanding its features and functions may result in unsafe operating conditions.

Warnings and Cautions which are general to the use of the ventilator under all circumstances are included in this section. Some Warnings and Cautions are also inserted within the manual where they are most meaningful.

Notes are also located throughout the manual to provide additional information related to specific features.

If you have a question regarding the installation, set up, operation, or maintenance of the ventilator, contact VASYS Healthcare Customer Care as shown in Appendix A, Contact & Ordering Information.

### Terms

| WARNINGS | identify conditions or practices that could result in serious adverse reactions or potential safety hazards. |
|----------|--------------------------------------------------------------------------------------------------------------|
| CAUTIONS | identify conditions or practices that could result in damage to the ventilator or other equipment.           |
| NOTES    | identify supplemental information to help you better understand how the ventilator works.                    |

### Warnings

Warnings and Cautions appear throughout this manual where they are relevant. The Warnings and Cautions listed here apply generally any time you work on the ventilator.

- Alarm loudness must be set above ambient sound in order to be heard.
- Due to possible explosion hazard, the ventilator should not be used in the presence of flammable anesthetics.
- An audible alarm indicates an anomalous condition and should never go unheeded.
- Anti-static or electrically conductive hoses or tubing should not be used within the patient circuit.
- If a mechanical or electrical problem is recognized while running the Operational Verification Tests, or while operating the ventilator, the ventilator must be removed from use until the problem has been identified and resolved.
- The functioning of this equipment may be adversely affected by the operation of other equipment nearby, such as high frequency surgical (diathermy) equipment, defibrillators, short-wave therapy equipment, "walkie-talkies," or cellular phones.
- Water in the air supply can cause malfunction of this equipment.
- Do not block or restrict the Oxygen bleed port located on the instrument back panel. Equipment malfunction may result.

- Electric shock hazard Ensure the ventilator is disconnected from the AC power supply before
  performing and repairs or maintenance. When you remove any of the ventilator covers or
  panels, immediately disconnect the internal battery "quick release" connector before working
  on the ventilator. If the ventilator has an external battery installed, ensure that the external
  battery is unplugged from the rear panel before proceeding
- A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation. Upon loss of protective ground, all conductive parts including knobs and controls that may appear to be insulated, can render an electric shock. To avoid electrical shock, plug the power cord into a properly wired receptacle, use only the power cord supplied with the ventilator, and make sure the power cord is in good condition.

The following warnings must be read and understood before performing the procedures described in this manual.

- Under no circumstances should this medical device be operated in the presence of flammable anesthetics or other volatile materials due to a possible explosion hazard.
- Liquid spilled or dripped into the unit may cause damage to the unit or result in an electrical shock hazard.
- Oxygen vigorously accelerates combustion. To avoid violent ignition, do not use any gauges, valves, or other equipment that has been exposed to oil or grease contamination.
- Do not use this device if any alarm/alert function is inoperative. To do so could result in a
  malfunction without warning, possibly resulting in personal injury, including death or property
  damage.
- All tubing and fittings used to connect high pressure gas from the source to the test equipment and from the test equipment to the device being tested must be capable of withstanding a minimum supply pressure of 100 psi (7.03 kg/cm2). The use of tubing and fittings not capable of withstanding this pressure could cause the tubing to rupture, resulting in personal injury or property damage.
- When verifying the operation of this medical device, do not breathe directly from the machine. **Always** use a fresh bacterial filter and test circuit. Failure to do so may constitute a hazard to the health of the service person.
- If any of the procedures outlined in this document cannot be verified, do not use this device and refer it to VIASYS Healthcare or a VIASYS Healthcare Authorized Service Facility or a VIASYS Healthcare Trained Hospital Service Technician.

### Cautions

#### The following cautions apply any time you work with the ventilator.

- Ensure that the voltage selection and installed fuses are set to match the voltage of the wall outlet, or damage may result.
- A battery that is fully drained (i.e. void of any charge) may cause damage to the ventilator and should be replaced.
- All accessory equipment that is connected to the ventilator must comply with CSA/IEC601/UL2601.
- To avoid damage to the equipment, clean the air filter regularly.

# The following cautions apply when cleaning the ventilator or when sterilizing ventilator accessories.

- Do not sterilize the ventilator. The internal components are not compatible with sterilization techniques.
- Do not gas sterilize or steam autoclave tubing adapters or connectors in place. The tubing will, over time, cause poor connection and possible leaks.
- DO NOT submerge the ventilator or pour cleaning liquids over or into the ventilator.
- Do not use MEK, Trichloroethylene or similar solutions as damage to surface may result. Do not allow any liquid to spill or drip into the ventilator.
- Circuit boards are subject to damage by static electricity. Do not touch components, circuit, or connector fingers with hands. Handle only by edges.

# **Equipment Symbols**

The following symbols may be referenced on the ventilator or in accompanying documentation

| Symbol             | Source/Compliance                                  | Meaning                                                                                                                                                                                                                                              |  |
|--------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                    | Symbol #03-02 IEC 60878                            | Indicates ATTENTION, consult ACCOMPANYING DOCUMENTS                                                                                                                                                                                                  |  |
|                    | Symbol #5016 IEC 60417                             | This symbol indicates a FUSE.                                                                                                                                                                                                                        |  |
| $\rightarrow$      | Symbol #5034 IEC 60417<br>Symbol #01-36 IEC 60878  | This symbol indicates INPUT.                                                                                                                                                                                                                         |  |
| $\ominus$          | Symbol #5035 IEC 60417<br>Symbol #01-37 IEC 60878  | This symbol indicates OUTPUT                                                                                                                                                                                                                         |  |
|                    | Symbol #5019 IEC 60417<br>Symbol #01-20 IEC 60878  | This symbol indicates protective EARTH (ground).                                                                                                                                                                                                     |  |
| $\bigtriangledown$ | Symbol #5021 IEC 60417<br>Symbol # 01-24 IEC 60878 | This symbol indicates the EQUIPOTENTIAL connection used to connect various parts of the equipment or of a system to the same potential, not necessarily being the earth (ground) potential (e.g., for local bonding).                                |  |
| Ϋ́                 | Symbol # 5333 IEC 60417<br>Symbol #02-03 IEC 60878 | This symbol indicates TYPE B equipment, which indicates equipment that provides a particular degree of protection against electric shock, particularly with regards to allowable leakage current and reliability of the protective earth connection. |  |
| $\sim$             | Symbol #5032 IEC 60417<br>Symbol #01-14 IEC 30878  | This symbol is located on the rating plate. It indicates the equipment is suitable for alternating current.                                                                                                                                          |  |
|                    | Symbol #5007 IEC 60417<br>Symbol #01-01 IEC 60878  | Indicates ON (Power)                                                                                                                                                                                                                                 |  |
| 0                  | Symbol #5008 IEC 60417<br>Symbol #01-02 IEC 60878  | Indicates OFF (Power)                                                                                                                                                                                                                                |  |
| السب<br>ACCEPT     | Symbol #0651 ISO 7000                              | Horizontal return with line feed. Indicates ACCEPT entered values for a specific field.                                                                                                                                                              |  |
|                    | VIASYS Healthcare Symbol                           | Indicates PATIENT EFFORT                                                                                                                                                                                                                             |  |
|                    | VIASYS Healthcare symbol                           | Indicates MANUAL BREATH                                                                                                                                                                                                                              |  |
|                    | VIASYS Healthcare Symbol                           | MAIN SCREEn                                                                                                                                                                                                                                          |  |
|                    | Symbol #417 IEC 5102                               | EVENT READY                                                                                                                                                                                                                                          |  |

|                  | VIASYS Healthcare Symbol                                           | MODE                                  |  |
|------------------|--------------------------------------------------------------------|---------------------------------------|--|
|                  | VIASYS Healthcare Symbol                                           | ADVANCED SETTINGS                     |  |
| * <b>* Ť</b>     | VIASYS Healthcare Symbol                                           | SET-UP for patient Data               |  |
|                  | VIASYS Healthcare Symbol                                           | SiPAP Duration                        |  |
| CE               | MDD Directive 93/42/EEC                                            | CE Mark                               |  |
| $\sum_{i=1}^{n}$ | Symbol #5307 IEC 60417                                             | ALARM RESET                           |  |
|                  | Symbol #5319 IEC 60417                                             | ALARM SILENCE                         |  |
| Ť                | VIASYS Healthcare symbol                                           | ADULT patient                         |  |
| Ť                | VIASYS Healthcare symbol                                           | PEDIATRIC patient                     |  |
| •                | VIASYS Healthcare symbol                                           | NEONATAL (Infant) patient             |  |
|                  | Graphical Symbol in<br>general use internationally<br>for "DO NOT" | CANCEL, do not accept entered values. |  |
|                  | VIASYS Healthcare symbol                                           | Select DISPLAYED SCREEN function.     |  |
|                  | Symbol 5467 IEC 60417                                              | FREEZE the current display.           |  |
| <b>_</b>         | VIASYS Healthcare symbol                                           | Enable the ALARM LIMITS screen        |  |
|                  | VIASYS Healthcare symbol                                           | This symbol indicates a CONTROL LOCK. |  |

|                        | VIASYS Healthcare symbol | NEBULIZER port                          |  |
|------------------------|--------------------------|-----------------------------------------|--|
| 02                     | VIASYS Healthcare symbol | Increase OXYGEN                         |  |
|                        | VIASYS Healthcare symbol | PRINT SCREEN                            |  |
| $\bigotimes$           | VIASYS Healthcare symbol | SUCTION port                            |  |
| └ Ů                    | VIASYS Healthcare symbol | VARIABLE ORIFICE FLOW SENSOR connection |  |
| ý.                     | VIASYS Healthcare symbol | HOT WIRE FLOW SENSOR connection         |  |
| n                      | VIASYS Healthcare symbol | ANALOG IN/OUT connection                |  |
|                        | VIASYS Healthcare symbol | Display the MAIN SCREEN                 |  |
| $\times$               | VIASYS Healthcare symbol | DO NOT BLOCK PORT                       |  |
| $\neg \vdash \bigcirc$ | VIASYS Healthcare symbol | EXTERNAL BATTERY connection             |  |
|                        | VIASYS Healthcare symbol | Indicates GAS ID port                   |  |
| 02                     | VIASYS Healthcare symbol | OXYGEN SENSOR connection                |  |
|                        | VIASYS Healthcare symbol | OVERPRESSURE relief                     |  |
|                        | VIASYS Healthcare symbol | REMOTE NURSE CALL connection            |  |

|                  | VIASYS Healthcare symbol | UNIVERSAL INTERFACE MONITOR connection          |  |
|------------------|--------------------------|-------------------------------------------------|--|
|                  | VIASYS Healthcare Symbol | This symbol indicates an EXTERNAL BATTERY INPUT |  |
|                  | VIASYS Healthcare Symbol | This symbol indicates an INTERNAL BATTERY FUSE  |  |
| $\mathbf{h}^{T}$ | VIASYS Healthcare Symbol | This symbol indicates ALARM LOUDNESS            |  |

# Chapter 2 Theory of Operation

# **General Description**

AVEA is a software driven, servo-controlled ventilator designed to meet the requirements of neonate to adult patients. The design intent of the device is to provide a high performance software-driven gas delivery engine, which is capable of providing a full range of volume and pressure ventilation including dual limb NIPPV. This affords the flexibility of developing new modes of ventilation with no impact to the basic gas delivery engine. In addition, the device will contain a graphical user interface (GUI) that utilizes a 12.1-inch SVGA color LCD screen with integral touch screen. The GUI will be used to change settings and operating parameters as well as providing real time waveforms, digital monitors, and alarms. The device will also contain an optional internal battery backed up compressor, which will allow the device to be used for inter-hospital transport as well as backup in case of loss of hospital AC power.

Two models of the device will initially be released as shown in table 2.1 based on the same basic platform. Additional models may be developed in the future by adding or removing software and/or hardware features to the existing platform.

### Table 2.1 AVEA Features

| FEATURES                  | MODEL                    |                 |
|---------------------------|--------------------------|-----------------|
|                           | AVEA 200                 | AVEA 300        |
| Standard Features         |                          |                 |
| Patient Range             | Neonate - Adult          | Neonate - Adult |
| Display (12.1" CSVGA)     | Active                   | Active          |
| Prox. Flow Monitoring     | Hot wire (1)             | Hot wire(2)     |
| Prox. Pres. Monitoring    | N/A                      | Std             |
| Internal Battery          | Std                      | Std             |
|                           |                          |                 |
| Software Features         |                          |                 |
| All Modes of Ventilation  | Std                      | Std             |
| Waves                     | Std                      | Std             |
| Loops                     | Std                      | Std             |
| Trends & Chart            | Std                      | Std             |
| Maneuvers                 | Basic Maneuvers          | Std             |
|                           |                          |                 |
| Factory Installed Options |                          |                 |
| Internal Compressor       | Opt                      | Std             |
| Enhanced Monitoring       | N/A                      | Std             |
| Heliox                    | Opt                      | Std             |
|                           |                          |                 |
| Stand                     |                          |                 |
| High End Stand            | N/A                      | Std             |
| Mid Level Stand           | Std                      | N/A             |
| External Batteries        | Only with Customer Stand | Opt             |
| (17 AHr @ 24 VDC)         |                          |                 |
| Tank Holder               | Opt                      | Opt             |
|                           |                          |                 |

(1) Standard hot wire infant wye flow sensor only.

(2) Hot wire is the standard infant wye flow sensor. The Bicore adult and infant wye flow sensors can be used with the Enhanced Monitoring.

# High Level Design

AVEA has been designed with three basic modules, the user interface module (UIM), the pneumatics module (PM), and the stand (see Figure 1). The UIM contains a graphical user interface (GUI) which utilizes a 12.1-inch SVGA color LCD screen with integral touch screen. The UIM also contains a control PCB that has two microprocessors, control and monitor. The monitor processor manages the GUI, while the control processor has the real time control system that controls all of the mechanical valves in the PM. The UIM communicates with the PM via a high-speed serial channel (HSSC). The HSSC also provides power to the UIM.

The pneumatics module (PM) contains all of the mechanical valves, sensors, analog electronics, power supply including the internal batteries, and the optional internal compressor. The pneumatics module takes high-pressure air or 80/20 heliox and oxygen from an external wall source or other high-pressure source. It filters the gas and blends them through a stepper motor controlled blender according to the front panel settings. It then delivers the appropriate pressure or volume via a high-speed proportional solenoid with flow sensor feedback. The high-speed control system occurs every 2 msec and is computed in the control microprocessor in the UIM. The delivered gas flows to the patient through a safety valve that has a mechanical over pressure relief valve as well as a sub-ambient valve. The gas is forced into the patient by closing the servo-controlled voice coil exhalation valve, which is also controlled by the control microprocessor in the UIM. The patient is allowed to exhale by the voice coil exhalation valve, which also maintains baseline pressure or PEEP. The exhaled gas exits the patient through the expiratory limb of the patient circuit to an integral heated expiratory filter to an external flow sensor and out the exhalation valve to ambient air.

The pneumatics module has several additional capabilities. First it uses either air or 80/20 heliox for an input gas, and corrects all blending, volume delivery, volume monitoring and alarming, and FiO<sub>2</sub> monitoring and alarming based on the correct gas density. The system knows what the gas is, by a patent pending gas ID that identifies the appropriate inlet DISS fitting with the gas that is being delivered, which creates an inherently safer system for delivering heliox. The second capability is the optional back up compressor that is battery backed up for a minimum of 30 minutes by a fully charged internal battery, which allows for uninterrupted ventilation during a loss of AC power. The third feature is the ability to monitor volume either at the expiratory limb of the machine or at the patient wye. This allows for more accurate patient monitoring especially in infants while allowing the convenience of an expiratory limb flow sensor protected by a heated filter. Finally, the fourth feature is the ability to measure tracheal and esophageal pressure, which is currently commercially available only on other VIASYS (Bear/Bird) ventilators.

The stand is used to support the ventilator at an ergonomically correct height. It may contain an optional external battery for extended use with AC power (custom stand only). It also has an optional  $O_2$  bottle bracket so that the unit can be used without wall oxygen during inter-hospital transport. The stand does not contain active electronic or mechanical components other than the optional external batteries, which are charged when connected to A/C Power.



Figure 2.1 -- High End Device Modular Diagram

# **Detail Design**

### User Interface Module (UIM)

The UIM consists of a 12.1-inch, 800x600 active matrix LCD with an analog resistive touch screen overlay, a back light inverter, a set of membrane key panels, an optical encoder, and a Control PCB. Software and the touch screen provide a set of context sensitive soft keys. The membrane panel provides a set of hard (permanent) keys for dedicated functions. Selecting the function with a soft key and adjusting the setting using the optical encoder changes a parameter. The parameter is accepted or canceled by pressing the appropriate membrane key.



Figure 2.2 -- User Interface Design Module Block Diagram

The UIM performs all ventilator control functions, gas calculations, monitoring and user interface functions. The UIM uses a Graphical User Interface (GUI) via the active matrix SVGA LCD and resistive touch screen to provide system and patient information to the user and to allow the user to modify ventilator settings. The Control PCB (with two micro-controllers, RAM, ROM and support electronics) provides all ventilator functions. The Control micro-controller (MCU) performs all gas calculations; controls all valves, solenoids, and electronics required to deliver blended gas to the patient. The Monitor MCU handles all user interface requirements, including updating the active matrix liquid crystal display (LCD), monitoring the membrane keypad, analog resistive touch screen, and optical encoder for activity. The Monitor MCU also performs all the input/output functions of the UIM, including RS-232, printer, video output, and IEEE 1073 Medical Information Bus (MIB)[Not currently functional]. Communication between the Control and Monitor MCU's is accomplished via an 8 bit dual port SRAM. In addition, both MPU's monitor each other and both are independently capable of activating the fail safe system.

The UIM is self-contained and is tethered to the pneumatics module with a high-speed data and power cable. All valves are contained in the pneumatics module; the control MCU controls all ventilator functions via the high-speed serial channel (HSSC). The Monitor MCU provides additional input/output functions contained in the ventilator. These functions include analog outputs, independent lung ventilation, and nurse call and are updated by the Monitor MCU via the HSSC.

### Liquid Crystal Display

The liquid crystal display (LCD) provides graphical and digital feedback to the clinician. The panel is a 12.1" SVGA, 800x600 pixel, active matrix LCD. The LCD is used to implement the graphical user interface (GUI). It provides all of the adjustable controls and alarms, as well as displays waveforms, loops, digital monitors and alarm status in real time.

### **Touch Screen**

The touch screen in conjunction with the LCD provides a set of software configurable soft keys. The software allows the keys to be context sensitive. The touch screen is a 12.1" analog resistive overlay on a piece of glass, which is placed over the LCD. It has a resolution of 1024x1024. Physically the touch screen, consists of two opposing transparent resistive layers separated by insulating spacers. Actuation brings the two opposing layers into electrical contact. The Y coordinate is determined by applying a voltage from top to bottom on the top resistive layer. This creates a voltage gradient across this layer. The point of contact forms a voltage divider, which is read by the analog-to-digital converter. The X coordinate is determined by applying a voltage from left to right on the bottom resistive layer. Again this creates a voltage gradient and the point of contact forms a divider, which is read with an analog-to-digital converter.

#### Membrane Panel

The membrane panel provides a set of permanent dedicated keys, which allow the clinician to change certain ventilator functions. The membrane panel will provide visual status to the clinician via embedded light emitting diodes (LEDs). The membrane panel consists of membrane switches, which are read by the monitor CPU. The switches form a matrix of rows and columns. A key closure causes an interrupt to the monitor CPU, which responds by scanning the key matrix to determine which key has been pressed.

### Light Emitting Diodes (LEDs)

Some of the membrane keys require LED's to indicate when the key is active. The LED's are embedded into the membrane panels.

32

### **Optical Encoder**

The optical encoder allows the clinician to change settings. The setting to be changed is selected by pressing a soft key on the LCD and then turning the optical encoder to change the value. When the encoder is rotated two pulse streams are generated, phase A and B. When the encoder is turned clockwise, phase A leads B by 90 degrees. When the direction is counter clockwise, phase B leads A by 90 degrees. The electronics uses the phase information to drive an up-down counter, which is read by the monitor CPU. The optical encoder is not interrupt-driven and therefore must be polled by the monitor CPU.

### Back Light Inverter

The back light inverter converts 5 VDC into the high frequency AC voltage necessary to power the LCD back light, which is used to illuminate the LCD.

### **Control PCB**

The control PCB consists of two micro-controllers, the control CPU and the monitor CPU, both of which are 100 MHz ELAN 410's. The control and associated circuitry (RAM, ROM, etc) micro controllers perform all ventilator control functions including the 2 msec closed loop flow control servo and the 2 msec closed loop exhalation valve control servo. The monitor micro-controller manages the GUI and performs all user input and output including the RS-232 ports, printer port, video out, and MIB port. The two processors communicate with each other via a dual port RAM. The control processor communicates with the pneumatics module via a high-speed serial channel (HSSC - 4 Mbits/sec).

Each processor has 8 Mbytes of DRAM, and one Mbyte of flash memory for program storage. In addition, the monitor circuitry also has a second one Mbyte of flash memory for saving control settings and trended data for clinical parameters. The control PCB also contains a DC-to-DC converter to regulate the incoming 24 VDC to the voltages used by the UIM. Finally, the control PCB also contains all of the circuitry necessary to scan the membrane panels, touch screen, and optical encoder, as well as the video controller necessary to drive the SVGA LCD screen.

### **Pneumatics Module**

The pneumatics module (PM) consists of a power supply system including internal NiMH batteries, a transducer/ communication/alarm PCB (TCA PCB), the pneumatics, a heated expiratory system, a fan, an optional internal compressor, a built-in nebulizer system, and an audible alarm. The PM communicates with the UIM via the HSSC described above.



Figure 2.3 Pneumatics Module Block Diagram

### **Power Supply System**

The power supply system, consists of a power inlet module, and a medical grade 250-watt power supply, the power driver PCB, and a set of internal 12 VDC NiMH batteries connected in series. The power inlet system accepts a standard IEC medical grade power cord and allows the system to be configured externally for use with 100 to 240 VAC 50/60 Hz power. AC power is converted to 31 VDC by the internal medical grade power supply, which is also power factor corrected. The power driver PCB converts the 31 VDC from the power supply or the 24 VDC from the internal or external batteries to the appropriate voltages used by the rest of the system. The power driver PCB also contains the charging circuit for both the internal and external batteries, as well as the drivers for the flow control, exhalation valve, and multiple solenoids. The internal 4.5 Ah NiMH batteries can power the entire system including the internal compressor for 30 minutes, or 2 hours without the compressor. With the external 17 Ah lead acid batteries combined with the internal battery powers the entire system including compressor will run for 2 hours on batteries, and 8 hours without compressor.

### Transducer/Alarm PCB (TCA PCB)

The TCA PCB consists of circuitry for the audible alarm, the wye hot wire flow sensor, the gas ID, the inspiratory and expiratory pressure transducers, the source gas pressure transducers, the exhaled flow sensor, the FiO2 cell, and communications with the UIM. It also contains the nurse call, and analog input and output.

A 68HC705 micro-controller is used to generate alarm waveforms for an ASTM F1463-93 compliant alarm. A super capacitor is used to provide a minimum if 120 seconds of power without wall AC or a battery.

Analog circuitry is provided to signal condition the wye Hot Wire Flow Sensor signal and a 12 bit ADC is used to digitize the signal. A Flow Sensor Fail signal is provided to allow the Control Processor to determine when the flow sensor wire is broken. The Flow Sensor EEPROM is SPI bus compatible and is read at power up and when a Flow Sensor is connected.

The air inlet fitting contains a resistor for determining which gas source is connected to the Air inlet, Air or Heliox. The type of gas connected is determined with a resistor divider, one half of the divider is contained in a connector and the other half is located on the TCA. The resistor contained in the connector is different for each gas source and therefore produces a different voltage output from the divider. The output of the divider is read via an ADC.

Inspiratory and expiratory pressure transducers and associated signal conditioning are digitized on the TCA PCB. The control processor reads the digitized data via the HSSC. The air, oxygen, and blended gas pressure transducers and associated signal conditioning are on separate PCBs for ease of mounting. The amplified signals are cabled to the TCA where they are digitized and communicated to the control processor via the HSSC.

Exhaled flow is measured with a VARFLEX<sup>®</sup> Exhaled Flow Sensor. The VARFLEX<sup>®</sup> Flow Sensor uses a variable orifice with pressure taps on either side of the orifice. The TCA uses a low-pressure pressure transducer and analog circuitry to measure the flow proportional pressure drop across the orifice.

Integrated circuit temperature sensors are signal conditioned and digitized by the TCA electronics. The exhalation and ambient temperature sensors are cabled to the TCA PCB. The output of oxygen cell is also signal conditioned and digitized on the TCA.

There are four 10-bit analog output channels on the TCA for pressure, flow, volume, and breath phase respectively. They have a full scale of 0 to 5 VDC with 10-bit resolution. In addition, there are 8

programmable analog inputs that can be used to display external signals. They are digitized with a 10 bit DAC, and are scalable from 0 to 1VDC, 0 to 5 VDC, and 0 to 10 VDC.

Finally, there is a nurse call output that can be configured as either normally open or normally closed. The nurse call shall be activated for all medium and high priority alarms except when alarm silence is activated.

#### Pneumatics-Gas Delivery Engine

The Gas Delivery Engine receives and conditions supplied Oxygen, Air, or Heliox from an external and/or internal (compressor) sources. It then mixes the gas to the concentration required and delivers the desired flow or pressure to the patient.

The Gas Delivery Engine begins with the Inlet Pneumatics. The Inlet Pneumatics accepts clean  $O_2$ , Air, or Air alternate external gas; it provides extra filtration and regulates air and  $O_2$  gas before entering the Oxygen Blender. The Oxygen Blender mixes the gases to the desired concentration before reaching the Flow Control Valve. The Flow Control Valve controls the flow rate of the gas mixture to the patient. Between the Oxygen Blender and Flow Control Valve, the Accumulator System is installed to provide peak flow capacity. The Flow Sensor provides information about the actual inspiratory flow for closed loop servo control. The gas is then delivered to the patient through the Safety/Relief Valve and Outlet Manifold.



Figure 2.4 -- Gas Delivery Engine Block Diagram

#### Inlet System

The Inlet Pneumatics conditions and monitors the air, oxygen, and/or helium-oxygen mix supplies entering the ventilator. The Inlet Pneumatics has Inlet Filters that remove aerosol and particulate contaminants from the incoming gas supplies. The downstream Air Regulator and  $O_2$  Relay combination is used to provide balanced supply pressure to the gas blending system. The Air Regulator reduces the air supply pressure to 11.0 PSIG and pilots the  $O_2$  Relay to track at this same pressure. This system automatically regulates to 9.5 PSIG when the optional internal compressor is being used.

In the event the supply air pressure falls below the acceptable level, the internal compressor will be activated to automatically supply air to the blender. Without an optional internal compressor, the Crossover Solenoid opens delivering high-pressure oxygen to the Air Regulator, allowing the Air Regulator to supply regulated  $O_2$  pressure to pilot the  $O_2$  Relay. In addition, the Oxygen Blender simultaneously moves to the 100%  $O_2$  position, so that full flow to the patient is maintained.

In the event of an oxygen supply pressure drop below a pressure threshold, the Crossover Solenoid stays closed, the blender moves to  $21\% O_2$ , and the regulated air pressure provides 100% air to the blending system.
#### Oxygen Blender

The Blender receives the supply gases from the Inlet Pneumatics System and blends the two gases to the user-selected value. It consists of three sub-systems, valve, stepper motor, and drive electronics. The Oxygen Blender PCB provides the electronics needed to control the Oxygen Blender stepper motor. The stepper motor controls the oxygen blender and is stepped in 1.8-degree increments. The Blender has a disk, which is positioned during calibration. One end of the disk will interrupt the optical interrupter when the valve position is closed and the other end will only interrupt in case the Blender goes approximately one full revolution due to loss of position. An EEPROM will be used to store the number of steps required to travel from the home position to the full open position of the valve, the PCB revision, and manufacturing date.

#### Accumulator

The Accumulator stores blended gas supplied from either regulated wall gas or an optional internal compressor. The accumulator provides the capability to achieve volume capacity at relatively lower pressure, resulting in lower system power requirements. It stores blended gas during patient exhalation cycles which maximizes system efficiency. The Accumulator gas pressure cycles between 3 and 11 PSIG depending on the Tidal Volume. The system efficiency is improved because a smaller compressor can be used to meet Tidal Volume while the accumulator provides the extra gas needed to meet the patient's peak flow demand. A 6-L/MIN accumulator bleed orifice allows gas concentration in the accumulator to match the oxygen blender setting in a maximum time of 1 minute. A pressure relief valve will provide protection from pressure exceeding 12 PSIG to the accumulator.

#### Flow Control System

The Flow Control System provides the desired flow rate of gas to the patient. Real time feedback from the Flow Sensor through the Control System provides flow correction in the Flow Control Valve. The Flow Control System consists of a Proportional Voltage Servo Valve controlled by the real time measurement (2 ms) of flow through a variable orifice Flow Sensor. The variable orifice effect is created by a thin circular shaped piece of stainless steel that is mounted from an extended side in the flow stream. The flow will bend the metal creating a variable orifice. The flow proportional pressure drop is characterized and used for flow measurement. The Servo Control Electronics/Software receives and sends the control signals to the Flow Control System Components. Flow Control Valve adjustments are made for gas temperature, gas density, and backpressure.

#### Safety/Over Pressure System

The Safety/Pressure Relief Valve prevents over-pressure in the breathing circuit, and provides a connection between the patient and ambient air during a gas delivery failure from the Ventilator. A Check Valve downstream of the Safety/Pressure Relief Valve prevents flow from the patient back into the Ventilator. Pressure Relief around the Check Valve is accomplished through an orifice installed in parallel to the Check Valve. The Safety/Relief Valve allows the patient to breathe room air in the event of a ventilator or power failure. It also acts as an independent relief valve, which limits the maximum pressure the ventilator can deliver.

#### Hour Meter

The Hour Meter provides a means of monitoring the number of hours the ventilator is in use. In addition, it is used by the ventilator to track compressor hours of operation. A Curtis 201-hour meter is used. The hour meter is active as long as 5 volts is available. The hour meter outputs a continuous stream of serial data. The control processor reads the data by synchronizing to the start pulse of the data stream and then reading each successive bit. The hour meter does not have a visible readout and therefore must be read by software. The hour meter is hard mounted to the pneumatics engine and is cabled to the TCA PCB.

#### Heated Expiratory System

The heated expiratory system consists of a heated filter contained in a chamber with a micro-controller controlled heater, a water collector, an exhalation flow sensor, and a servo-controlled exhalation valve. The expiratory system is located at the end of the patient circuit; the Exhalation Valve regulates gas flow out of the patient circuit. Diaphragm position of the voice coil type active Exhalation Valve controls the exiting gas flow rate and patient circuit pressure with precision. Pressure feedback data is sent to the Electronic Control Unit continuously, which interprets the data, and based upon current ventilator settings, signals back to position the Exhalation Valve Diaphragm. Since the ventilator will be used in neonate, pediatric and adult ranges, the exhalation servo can be optimized for each circuit type to be used. The Water Collector and Filter remove contaminates from the gas flow before they reach the Flow Sensor, Exhalation Valve, or the environment. Also, warm air exhausts through the Exhalation System enclosure to the atmosphere.

The expiratory flow sensor determines flow by measuring the pressure difference across a variable orifice. The variable orifice is created with a thin circular shaped piece of stainless steel that is mounted on a hinge in the flow stream from an extended side. As flow increases and decreases the hinged flap creates the variable orifice effect. The pressure drop across the orifice is measured by a pressure transducer on the TCA and converted to flow by the software in the control micro-controller.

As stated earlier, the exhalation valve is a voice coil with a diaphragm. The exhalation valve controls circuit pressure, permits only one-way flow, and provides pressure relief above a set level during inspiration. The exhalation valve is controlled with a closed loop servo contained in the control micro-controller and is updated every 2 msec.

The water collector stores water that condenses in the expiratory limb of the patient circuit protecting the filter and exhalation valve system. The water collector consists of a vial and an inlet and outlet shaped fitting. A male 22 mm outside taper (15mm inside taper) connector is provided for the patient circuit connection and a 22 mm female connector is used for the heated filter.

The bacteria filter removes particles from the gas that exceed  $0.3\mu$ m in size. The excess water drains into the water collector reducing the risk of contamination of the exhalation valve system. Warm heated air flows past the outside surface of the filter reducing condensation in the filter. The filter is an off-the-shelf purchased part.

#### Fan

A 40 cfm fan runs at all times to keep the internal temperature of the pneumatics module as close to ambient as possible. In addition, the fan forces flow out past the expiratory filter. A heater heats the gas as it exits in order to heat the filter as described above.

#### Compressor System (Optional)

The Compressor System provides 3 to 9.5 PSIG air pressure to the system when wall air is not available. The Compressor has two opposing machined aluminum involutes that are called Scrolls. One scroll orbits a fixed scroll forming air pockets that get progressively smaller as they travel from the outer to inner regions of the involute, compressing the gas. The shaft rotation from a brushless DC motor powers the orbiting scroll within the fixed scroll through an eccentric shaft. It operates at 800 to 3,000 RPM using about 100 watts at 24 VDC. A Pressure Servo improves power efficiency and noise by matching ventilator demand with supplied compressed air. While the accumulator is the device which handles the peak flow demand, the servo operates the compressor at a level which matches the minute ventilation of the patient.

#### Nebulizer System

The Nebulizer system provides a 10 PSIG source of blended gas for an external nebulizer. The gas will only be delivered during the inspiratory cycle of a breath so that the delivery of nebulized gas will be synchronized with the patient's breathing. Most manufacturers' nebulizers draw between 4 and 8 L/MIN at 10 PSIG.

## Enhanced Patient Monitoring PCB (Optional-EPM) – Future Software Option

The Enhanced Patient Monitoring PCB provides Esophageal and Tracheal pressure monitoring and VARFLEX<sup>®</sup> wye flow sensing. The EPM PCB contains all of the signal condition as well as the pressure transducers for the esophageal pressure, tracheal pressure, and wye flow sensing. In addition, it contains a 12-bit serial ADC to convert the pressures to digital data. The TCA provides the chip select and solenoid control signals. Three solenoids are used to control the evacuation and filling of the Esophageal Balloon. Two solenoids are used to provide purge flow and auto zeroing of the flow sensor pressure transducer.

# **Chapter 3** Installation Instructions

This chapter provides instructions for installing the AVEA ventilator systems.

## Stand Assembly

## Basic Stand Assembly Instructions (P/N 15986)

#### **Basic stand carton contents**

| QUANTITY | DESCRIPTION                    |
|----------|--------------------------------|
| 10 each  | 5/16" screws                   |
| 10 each  | 5/16 " lock washers            |
| 2 each   | 1/2" nuts                      |
| 1 each   | Drag chain and modified washer |
| 2 each   | Flat washers for pole          |
|          |                                |

#### **Tools required**

1/2" open end socket 3/16" Allen wrench or driver

- 1. Remove the contents of carton.
- 2. Attach the base to the pedestal using the 5/16" screws, washers and nuts as shown in Figure 3.1. The anti-static drag chain may be attached to either screw.
- 3. Attach the pole to the assembly using the 5/16" screws and washers (refer to Figure 3.1).
- 4. Attach the top plate to the pedestal using the 5/16" screws and washers (refer to Figure 3.1).



Figure 3.1 Assembling the Stand

5. Place AVEA Ventilator on top plate, align thumbscrews (4) and lightly start all thumbscrews to locate AVEA Ventilator (refer to figure 3.2). Fully tighten (4) thumbscrews to secure AVEA Ventilator.



Figure 3.2: Bottom of stand

## Comprehensive Stand Assembly Instructions (P/N 33976)

- 1. Open the main carton and remove and open the center carton that contains the pedestal, hardware and instructions.
- 2. Remove the second carton that contains top plate/pole and set aside.
- 3. Remove the four-legged base assembly from the carton and set the base on the floor as shown in Figure 3.1.
- 4. Place the pedestal onto the base assembly as show in Figure 3.1.
- Using the 1/8" Allen wrench provided, install and secure the (4) 10/24" x <sup>3</sup>/<sub>4</sub>" screws along with the (4) star washers.
- 6. Install the collar set screw using the 1/8" Allen wrench as shown in Figure 3.2.
- 7. Remove the pole from the top plate carton and install and secure the I" pole using the collar set screw as shown in Figure 3.2.
- 8. Remove the top plate and set it onto the pedestal and pole as shown in Figure 3.2.

|     |                                         | AVEA ventilator Systems                | 4: Assembly and Disassembly         |
|-----|-----------------------------------------|----------------------------------------|-------------------------------------|
| 9.  | Using the 3/32" Allen wrend Figure3.#3. | ch provided install and secure the (4) | counter sink screws as shown in     |
| 10. | Using the 1/8" Allen wrencl             | h, secure the set screw of the upper o | collar into the 1" pole as shown in |

... .

# NOTE

Figure 3.2.

44

If installing external battery pack, proceed to the external battery installation procedures.

- 11. Place the AVEA ventilator on the top plate, align the (4) thumbscrews, and lightly start all thumbscrews to locate AVEA Ventilator.]
- 12. Fully tighten (4) thumbscrews to secure the AVEA Ventilator.

## **External Battery Installation Procedures (P/N 11316)**

Before installation, verify that the following parts are in your external battery kit:

| Description                                                            | Quantity | Part Number |
|------------------------------------------------------------------------|----------|-------------|
| 12V lead acid battery                                                  | 2        | 16179       |
| Battery tray, screw (10/32 x 5/16) X2, washer #10 X 2 & nut 10/32 KEPS |          | 33977       |
| Wire harness                                                           | 1        | 51000-40825 |
| PC Board                                                               | 1        | 16105       |
| Cable ties (10) & mounts (5)                                           |          | 52000-00239 |
| Literature                                                             | 1        | L2353       |
| Rack Tank Cart Assembly                                                | 1        | 33978       |

If any parts are missing contact VIASYS AVEA Customer Service.

- 1. Unscrew the (4) thumbscrews securing the base to the ventilator body as shown.
- 2. Lift the ventilator body and UIM from the wheeled base.
- 3. Gently set the ventilator down on a secure flat surface.

## Note

Do not rest the ventilator on the protruding patient breathing gas outlet. Resting the weight of the ventilator on this outlet may cause damage resulting in leaks at the site.



Figure 3.3: Patient breathing gas outlet

4. If attached, remove the gas tank holder from the base.



Figure 3.4: Remove gas tank holder

Detach the drop-cable portion from the main battery harness as shown.

Drop Cable Harness

Figure 3.5: Drop cable and battery harness

6. Remove the two screws holding the face plate between the rear wheels of the AVEA cart and detach the faceplate.



Figure 3.6: Face Plate

7. Thread the cable harness through the cart pole.



Figure 3.7: Threading the cable harness

5.

## CAUTION

After the cable has been threaded, inspect the cable for any cuts, abrasions or other damage.

8. Place the two batteries into the tray as shown in Figure 3.8.



Figure 3.8: Placing batteries into the tray

- 9. Attach the harness (P/N 51000-40825) to the batteries:
  - Connect the black wire to the negative post (black) on the outer right battery.
  - Connect the dual orange wire to the positive post (red) on the inner right battery.
  - Feed the single orange and single red wires through the center battery support bracket opening to the left battery area.
  - Connect the single orange wire to the negative post (black) on the left battery.
  - Connect the single red wire (positive) to the positive post (red) on the left battery.



Figure 3.9: Battery harness

10. Attach the monitor PC board (P/N 16105) and wiring-- connect the 4-pin male molex to the 4-pin female molex from the battery harness



Figure 3.10

11. Connect the red wire harness (with fuse) to the 2 purple wires of the monitor PC board wiring.



Figure 3.11

12. Attach the neutral ground wire harness: Connect the 2 pin male molex containing the single black and the single green/yellow ground wire to the drop cable 2 pin female molex containing the single black wire and the single insulated wire.



Figure 3.12

13. Attach the 2-pin molex male to the 2-pin molex female of the drop cable (red and white wires).



Figure 3.13

#### Final wiring connections and stabilization of external battery components

- 14. Attach the 2 pin male (red and white) connector to the 2 pin female (red and yellow) connector
- 15. Attach the black male connector of the drop cable to the black female connector of the 5 pin molex connector and monitor PC board
- 16. Attach the green and yellow ground wire lug connector to the grounding stud on the support bracket. Secure with the 10/32 KEPS nut provided
- 17. Use cable ties (P/N 52000-00239) and mounts to secure wires, harnesses, connections in such a way to prevent kinking, pinching, tearing, scuffing or any other damage while the external battery module is being assembled and mounted.



HARNESS ASSY, AVEA EXTERNAL BATTERY

Figure 3.14

18. Slowly slide the completed battery and tray assembly onto the mount beneath the AVEA stand making sure that no wires are kinked or scuffed during assembly. Maintain tension on drop cable from top of cart to prevent kinking at battery tray. Sufficient cable slack must be available at top of cart to make connection at back of ventilator.



Figure 3.15

- 19. Attach the faceplate removed on in the instructions on page to the bottom of the battery tray with the hardware supplied.
- 20. Re-attach the ventilator body to the stand making sure the external battery cable lays untwisted in the cable slot and emerges at the rear of the ventilator.



21. Connect the external battery cable to the connection labeled EXT BATT on the rear panel of the AVEA.



- 22. Plug the AVEA into a grounded AC outlet and apply power to the ventilator.
- 23. Check that the battery status display on the front panel indicates that the ventilator is connected to External battery power.

## Note

The battery status will indicate red immediately after the external batteries are connected and the unit is powered up. If the batteries are fully charged, the battery status should indicate green (charged) within one hour of connection. If the batteries are not fully charged, it may take several hours to indicate green. Refer to your operator's manual for recommended battery charging.

# "E" Cylinder Bracket Assembly Instructions

Before installation, verify that the following parts are in your external battery kit:

| Quantity | Description                             |
|----------|-----------------------------------------|
| 1 each   | Saddle                                  |
| 1 each   | Center post with Velcro cylinder straps |
| 2 each   | 1/4"-20 counter-sink allen-head screws  |
| 4 each   | 1/4"-20 round-head allen screws         |
| 4 each   | Lock washers                            |

#### **Tools Required for Assembly**

1 each 5/32" allen wrench/driver

#### Assembly Instructions for Basic Stand Bracket

1. Install the center post in the tank bracket using two flathead 1/4"-20 thread screws to secure. (Figure 3.18)



Figure 3.18

2. Place assembled tank bracket on short side of "H" stand legs. (Figure 3.19)



Figure 3.19

# NOTE

If there are pre-drilled holes on the "H" stand, skip to Step 8.

3. Place tape measure under bracket. Slide bracket back 3/4" from the edge of the "H" cross piece. (Figure 3.20)



Figure 3.20

4. Center the bracket on the two legs of the "H". The bracket should be positioned approximately 11/16" from the outside edge of each leg. Recheck the initial 3/4" dimension measurement (refer to Figure 3.21).



Figure 3.21

5. Using a pencil, mark location of tank bracket in center of slotted holes on the bracket. (Figure 3.22).



Figure 3.22

6. Center punch-marked locations. Before drilling, move rear wheels out of the way to prevent damage. (Figure 3.23).



Figure 3.23

7. Using 17/64" (.265) drill bit, drill through both bracket walls. (Figure 3.24)



Figure 3.24

8. Remove burrs from drilled holes and insert screw from bottom, guiding through both holes in tubing and tank bracket. (Figure 3.25)



Figure 3.25

9. Place washer (x4) and nuts (x4) over screws and tighten securely.



Figure 3.26

#### Assembly Instructions for Comprehensive Stand Bracket

- 1. Place the comprehensive stand on a flat surface with the rear of the stand facing up.
- 2. Align the saddle with the 4 stand mounting holes.
- 3. With the 5/32 allen wrench, install and secure the 4 screws and lock washers to attach the saddle to the stand.

## CAUTION

Ensure that the saddle is in no way touching the wheels/casters of the stand.

## **AVEA Unpacking Instructions**

#### Introduction

The AVEA is packaged in two parts for safe shipping. A small amount of assembly is required. All literature and instructions to enable you to safely assemble, set up and check your AVEA are included in the box with your ventilator.

#### Unpacking

## CAUTION

The AVEA shipping container is designed to be moved or positioned by a forklift or pallet jack only. **Do not** attempt to lift or manipulate the container manually as damage or injury could result.

# Note

The AVEA Cart shipped with your ventilator must be assembled first. To reduce the risk of damaging the ventilator, make sure the cart is ready before you unpack the instrument.

## Note

Your Operator's Manual and other important literature are packed beneath the AVEA. Do not discard!

- 1. Remove all outer securing straps by cutting them. Discard.
- 2. Open the box and remove the top layer of packaging material. (Figure 3.27)





3. Remove the AVEA accessory box. Place it on a secure surface. (Figure 3.28)



Figure 3.28

- 4. To remove the cardboard cover, lift the box straight up. Do not pull or tilt the cover until you are sure it has cleared the ventilator.
- 5. Remove the protective packaging from the sides of the ventilator and carefully remove the plastic. (Fig. 3.29)



Figure 3.29

6. Apply the brakes on the cart that has been previously assembled by pressing down on the foot pedals. (Fig. 3.30)



Figure 3.30

7. With assistance, lift the AVEA from the box and carefully position the unit on the top plate assembly of the cart. Secure the unit using the 4 thumbscrews. (Figure 3.31 and Figure 3.32)



Figure 3.31



# Note

Make sure the external battery cable lays untwisted in the cable slot and emerges at the rear of the ventilator (if applicable)

8. Loosely secure the 2 thumbscrews in the back of the ventilator, followed by the 2 thumbscrews on the bottom front of the unit. Tighten all 4 screws.

## **Medical Gas Connector Kit Installation Instructions**

#### Air "Smart" Connector Installation Instructions (P/N 51000-40897)

## Note

If you have not ordered the Heliox option, you will receive only the Air smart connector and the appropriate air hose for your configuration. The Air connector comes pre-assembled with the integral water trap/filter as shown in figure 1. It attaches to the fitting located to the left of the Oxygen cell on the rear panel of the AVEA.

#### CAUTION

Always consult your Operators Manual for instructions and clinical recommendations concerning the use of AVEA accessories.



1. Carefully align and seat the 'smart' connector pin and the gas fitting.

2. Tighten the threaded collar on the AVEA onto the male gas fitting of the "smart' connector assembly. (Fig. 3.34)



3. Attach the Air hose appropriate for your gas configuration. (Fig. 3.35) (Female DISS fitting is shown here).



# Air and Heliox Tethered "Smart" Connector Installation Instructions (P/N 16132)

## WARNING

Connection of a gas supply at the Helium-Oxygen mixture inlet that does not contain 20% oxygen can cause hypoxia or death.

Although an 80/20 mixture of Helium and Oxygen is marketed as medical grade gas, the Helium/Oxygen gas mixture is not labeled for any specific medical use.

# Note

The Heliox "smart" connector comes already tethered to the Air assembly and the "smart" connector attachment bracket as shown in figure 4.



Figure 3.36

## Note

The Heliox "smart" connector is designed for use with an 80/20 Heliox tank only. Only a mixture of 20% oxygen and 80% Helium can be used as the Heliox gas supply.

- 1. To assemble the Air/Heliox assembly, first attach the Air "smart" connector/water trap assembly to the AVEA rear panel fitting as described in the "Air connector only installation instructions" section.
- 2. After attaching the Air connector, remove the Philips screw from the rear of the AVEA. (Figure 3.37)



Figure 3.37

3. Insert the screw provided in the kit through the mount on the tethered Heliox Smart connector holder. (Fig. 6)



Figure 3.38

# Heliox "Smart" Connector Installation Instructions (P/N 51000-40918)

## Note

The Heliox "smart" connector is designed for use with an 80/20 Heliox tank only. Only a mixture of 20% oxygen and 80% Helium can be used as the Heliox gas supply. To use the Heliox "smart" connector you must turn off the air gas supply and unscrew and detach the Air hose from the air smart connector.

## CAUTION

The air "smart" connector and water trap are removed as one unit. Do not attempt to separate them as you may damage the assembly.

# Note

Heliox 15' hose is P/N 50000-40042.

1. To remove the Air "smart connector and water trap, support the assembly with one hand and loosen the attachment collar. (Figure 3.39)



Figure 3.39

2. While still supporting the air connector, loosen the collar of the tethered Heliox Connector and detach it from its storage bracket. (Figure 3.40)



- Figure 3.40
- 3. Position the Air connector onto the same support bracket and tighten down the collar until the air connecter and water trap are **fully secured** to the storage bracket.

#### CAUTION

Make sure that neither the air nor the Heliox tether gets caught in the support collar while you are tightening it down. If either tether fouls the threads of the collar, the Air connector assembly may not be adequately secured to the bracket.

4. Align the Heliox smart connector with the Smart connector receptacle on the left side of the AVEA back panel from which you removed the Air connector. Tighten down the collar of the gas port onto the Heliox fitting. (Figure 3.41)

5. The HeO2 cylinder symbol should appear in the lower right hand corner of the user interface screen.



Figure 3.41

# Chapter 4 Assembly and Disassembly

# **General Instructions and Warnings**

The removal and installation of major subassemblies requires OVP and possibly calibration. Refer to chapters 5 and 7 for instructions.

When disassembling or assembling the AVEA, refer to the tubing diagram, P/N 51000-40840, the wiring diagram P/N 51000-40839 and appropriate schematics and assembly drawings located in Appendix B of this manual. The illustrations shown here are for reference only, current revisions of these diagrams and schematics are available to qualified personnel from VIASYS Healthcare, Critical Care Division, Technical Support.

## WARNING

Always take standard ESD precautions when working on AVEA ventilator systems.

Assume that you are adequately earth grounded prior to handling and working inside of the AVEA ventilator.

Ensure the ventilator is disconnected from the AC power supply before performing repairs or maintenance. When you remove any of the ventilator covers or panels, disconnect the internal battery "quick release" connector (see figure 3.1) before working on the ventilator. If the ventilator has an external battery installed, ensure that the external battery is unplugged from the rear panel before proceeding.

## **Recommended Tools & Equipment**

# Note

Before using any test equipment [electronic or pneumatic] for calibration procedures, the accuracy of the instruments must be verified by a testing laboratory. The laboratory master test instruments must be traceable to the NIST (National Institute of Standards Technology) or equivalent. When variances exist between the indicated and actual values, the calibration curves [provided for each instrument by the testing laboratory] must be used to establish the actual correct values. This certification procedure should be performed at least once every six months. More frequent certification may be required based on usage.

Long & short Philips screwdrivers Flat bladed screwdriver 7/8" Nut Driver 11/32" Nut Driver **Digital Volt Meter** P/N 33754 Adult test Lung Adult Patient Circuit P/N 16045 Infant test lung P/N 10107 P/N 16044 Infant Patient Circuit Oxygen Analyzer Rubber Stopper Stop Watch

# User Interface Module (UIM) and Top Cover

#### **UIM Removal**

1. If installed, remove the exhalation filter assembly as shown below.



Figure 4.1 Open locking lever

Rotate the metal locking lever on the lower right of the ventilator body forward to an open position.

Remove the exhalation filter assembly from the ventilator body as shown. Pull straight down.



Figure 4.2 Remove exhalation filter



Close the locking lever.

Figure 4.3 Close locking lever in place

- 2. Remove the rubber collar by grasping one of the two rubber tabs at the bottom. Pull firmly in an "arcing" motion.
- 3. Remove the (1) Phillips screw on the front arm cover below the monitor and remove the front arm cover.
- 4. Remove the two mounting screws now visible inside the back arm cover.
- 5. Tilt down the UIM screen and remove the back arm cover.
- 6. Remove the (2) Phillips screws on the connector attached to the rear panel and unplug the UIM interface cable.
- 7. Using a long Phillips screwdriver, remove the (1) Phillips screw located at the top of the exhalation filter assembly well. It is suggested to temporarily disconnect the flow sensor in able to obtain easier access to this area.



Figure 4.4: Screw Removal

8. Remove the (1) Phillips screw located at the exhalation port marked EXH.



Figure 4.5: EXH Screw Removal

- 9. Remove the (4) 11/32 KEP nuts on the rounded portion of the molded plastic top cover.
- 10. While supporting the UIM continuously, remove (4) 3/8 KEP nuts holding the UIM in place on the aluminum ring.
- 11 Remove the UIM, then the plastic top cover.
- 12 Remove (19) SEMS screws (3) on the left, (5) on the right and (11) on top.

#### WARNING

Always disconnect the white battery quick disconnect once the top cover is removed to prevent injury and/or damage to the AVEA Ventilator System.

## Note

*Prior to complete reassembly, UIM may be temporarily installed for testing and calibration.* 

#### Installation

- 1. Re-connect the internal battery.
- 2. Replace the top cover, ensuring that the left side is behind the plastic lip and the front is behind the plastic cover. Secure with (19) SEMS screws, (3) on the left side, (5) on the right side, (11) on the top.
- 3. Set the plastic cover on top of the unit.
- 4. While supporting the UIM, position the screen toward the front, feed the interface cable under the plastic cover towards the back panel, line up the mountings over the threaded studs, and secure the UIM with (4) KEPS nuts.
- 5. Install the lug caps on the (4) 3/8 KEPS nuts.
- 6. Install and secure the cable (molded gray cover connector) using Phillips screws with washers to the rear panel.
- 7. Install, but do not secure, the plastic cover with (4) 11/32 KEPS nuts.
- 5. Attach the Phillips screw located in the exhalation port.
- 9. Using a long Phillips screwdriver, attach the screw located above the exhalation filter assembly.
- 10. Reattach the exhalation filter assembly.
- 11. Tighten the (4) 11/32 KEPS nuts on the plastic cover.
- 12. Install the (2) Phillips screws on the back that attach the molded plastic cover to the unit.
- 13. Tilt the UIM down and install the back arm cover by pushing it into the rubber gasket at the top of the arm and snapping down the cover. Re-attach the two mounting screws.
- 14. Replace the front arm cover being sure to locate the two molded protrusions on the top of the front arm cover into the corresponding notches on the top of the back cover. Secure with the long Phillips screw.

## Gas Delivery Engine P/N 51000-40022

#### Gas Delivery Engine Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the molded and metal top covers
- 2. Remove the (4) SEMS screws located at each corner of the rear panel.
- 3. Disconnect the yellow hose from the white connector that goes to the accumulator; cut the tie wrap, pull off the metal tubing support (see diagram), Cut the tie wrap. Pull off the metal tubing support, and release from the compression fitting.
- 4. Completely remove the yellow hose between the gas delivery engine assembly and the white scroll pump/compressor filter.

5. Squeeze the two small ribbon cables near the front of the gas delivery engine assembly (the 0-pin ribbon cable connector from the flow sensor assembly and the 20-pin ribbon cable connector from the front interface panel).

## CAUTION

Never pull on a cable during disconnection, damage to the connector wiring may result. Always pull on the connector body to disconnect.

6. Unscrew the luer-lock fittings (the clear tubing from F4, and the black striped tubing from G4)..

#### Figure 4.6 G4 and F4 luer connections

- 7. Disconnect the tubing to the bleed from yellow C4 by releasing the compression fitting.
- 8. Disconnect the large blue tubing to the nebulizer from H4 by releasing the compression fitting.





#### Figure 4.7 C4 and H4 compression fittings

- 9. Disconnect the yellow tubing (D4) that feeds the EPM board.
- 10. Disconnect the 4 pin connector from the battery monitor board to the gas delivery engine.
- 11. Loosen the 11/32 nut securing the assembly to the base at the bottom front left.
- 12. Ensure all cables and tubing are tucked into the gas delivery engine assembly and slide the assembly out of the unit towards the rear. You will here a distinct "pop" as the assembly disconnects from the driver transition board connection.

## Note

You may need to pull firmly as you slide out the gas delivery engine assembly because it is attached to the 120-pin connector on the driver transition board.

## Installation

#### WARNING

Prior to re-installing the GDE, Insure that C31 is not touching the Flow Control Valve or that there is insulation material between the two. (C31 is the orange capacitor located closest to the top of the FCV).

- 1. Ensure all cables and tubing are tucked into the gas delivery engine assembly and slide it as far into the unit as required to hold the assembly. Do not yet connect the assembly to the driver transition board.
- 2. Connect yellow hose (D4) to the EPM board.
- 3. Connect the tubing from the EPM board into C4 by inserting into the compression fitting.
- Connect the yellow bleed tubing from the sensor assembly: the clear yellow tubing to F4, and the blue tubing to G4. To connect into the luer lock fittings, twist and push.

Alignment Pins for Gas Engine

- 5. Connect the clear tubing from the sensor assembly to F4 luer lock fitting, and the black striped tubing to G4 luer lock fitting.
- 6. Connect the two ribbon cables located at the front of the ventilator (the 10-pin ribbon cable to J17 and the 20-pin ribbon cable to J16).
- 7. Connect the 4 pin battery monitor board to the gas delivery engine.
- 8. Engage the gas delivery engine to the driver transition board by ensuring proper alignment of the two alignment pins and the connector and pressing firmly into place.



## CAUTION

It is essential to ensure correct alignment to the 120-pin connector on the driver transition board (see diagram) before pushing home the gas delivery engine. Failure to do so may result in damage to the connector and the unit may not power up or operate properly.

- 9. Attach and secure the (4) SEMS screws on the four corners of the rear panel.
- 10. Replace the yellow hose from the gas delivery engine to the compressor filter. Ensure that you position
- 11. Connect yellow hose from the accumulator into the compression fitting. Replace the metal safety bracket, and secure with a new tie wrap.
- 12. Tighten the 11/32 nut at bottom right of the Gas Delivery engine and tighten down.

Large Gas Engine Connector
- 13. Referring to the instructions in this chapter, install the following components:
  - UIM and the top cover.

## Ventilator wheeled base

#### Removal

1. Unscrew the (4) thumbscrews on attaching the base to the ventilator body as shown in figure 3.16 and detach from the wheeled base.

#### Installation

1. Position the ventilator assembly onto the base by lining up the holes over the 4 spring-loaded thumbscrews and tighten the thumbscrews.



Figure 4.9 Wheeled base showing attachment points

## **Internal Batteries**

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the top cover
  - Internal battery fuse holder
- 2. Disconnect the battery fuse holder by pulling straight back on the two faston connectors.
- 3. Remove the fuse holder and fuse from the ventilator chassis using pliers to remove nut.
- 4. Remove the (3) 11/32 KEPS nuts that hold the battery bracket in place; (2) KEPS nuts on the bottom and (1) on the top.
- 5. Slide out the retaining bracket and the batteries.



Figure 4.10 Battery fuse holder & Bracket

- 6. Disconnect the positive and negative leads from the wire harness that connects to the driver transition board.
- 7. Cut both tie wraps that secure the battery monitor board and the 4-pin molex to the batteries.
- 8. Disconnect the batteries from each other.



Figure 4.11 Battery Assembly

- 1. Cut three 3" stripes of 1" wide double-backed adhesive tape. Place one strip on the bottom of one battery, and the other two strips on the top and bottom of the other battery.
- 2. Place the first battery against the chassis and the second battery on top of the first.
- 3. Secure the batteries into place with the retaining bracket by using (3) 11/32 KEPS nuts; (2) KEPS nuts on the bottom and (1) on the top.
- 4. Connect the positive and negative battery leads to the wire harness that connects to the driver transition board. (These are arranged M-F and F-M so they cannot be wrongly connected)
- 5. Replace the fuse holder into the front of the chassis.
- 6. Connect the lug connectors to the two battery fuse terminals using either combination of wires.
- 7. Referring to the instructions in this chapter, install the following components:
  - UIM and the top cover.



## Compressor/Scroll Pump P/N 51000-09750

Figure 4.12 Compressor/ Scroll Pump

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the top cover.
- 2. Remove high pressure hose from compressor motor at the filter outlet. Move the high pressure hose out of your working area.
- 3. Remove the (4) 11/32 KEPS nuts in each corner of the compressor mounting base. Remove the (1) ground wire located at the front right of the compressor.
- 4. Disconnect compressor wiring harness (molex P2) from compressor driver board.
- 5. Carefully lift compressor pump to clear the power board shield.
- 6. Access the 12-pin scroll pump connector and disconnect from the driver transition board.
- 7. Remove the (2) KEPS nuts on the scroll compressor board (1) on the right and (1) on the front.
- 8. Scroll pump is now completely detached.
- 9. Remove from the unit and set aside.

## Note

Compressor power board should be placed in an antistatic bag.

- 1. Slide the compressor/scroll pump in the front right side of the ventilator and position over the (4) studs.
- 2. Install ground wire over right front stud and secure with one of the 11/32 KEPS nuts.
- 3. Secure compressor using the (4) 11/32 KEPS nuts over the (4) studs.

4. Connect 8-pin molex connector from compressor to compressor control board.

## Note

Ensure the scroll compressor assembly is seated below the wire that runs from the driver transition board to the fan and push down the wire harness from the driver transition board under the front of the scroll pump to avoid wedging it between the scroll pump and the chassis

- 5. Position the scroll compressor board onto two studs and secure with (2) KEPS nuts; (1) on the right and (1) on the front. 33928 (Blue) Filter & 33929 (White) Filter.
- 6. Reattach the high pressure hose to the filter outlet.
- 7. Referring to the instructions in this chapter, re-install the following components:
  - UIM and the top cover.

## EPM Board P/N 51000-40848

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the top cover.
- 2. Disconnect all of the tubing to the EPM board.
- 3. Disconnect the ribbon cable (R07) from the driver transition board by depressing the locking tabs on either side and pulling on the connector.

#### CAUTION

Never pull on a cable during disconnection.

- 4. Disconnect the 10-pin ribbon cable at JP1 and 4-pin wire cable to the front interface panel at JP5.
- 5. Remove the 2 Phillips screws on the top of the board and pull it out of the chassis.

#### Installation

1. Position the EPM board so that the notches at the bottom, line up with the two studs on the middle of the chassis (see diag) and secure with (2) SEMS screws at the top of the board.



Figure 4.13 EPM Board alignment notches

## Note

Ensure that you do not pinch any tubing since this can result in damage to the AVEA.

- 2. Connect the 10-pin ribbon cable to JP1 and 4-pin wire cable to the front interface panel to JP5.
- 3. Connect 24 pin ribbon cable (51000-40782) to JM1.
- 4. Connect the 4-pin wire cable to the front interface panel to JP5.
- 5. Connect the tubing. Connect clear tubing with inline orifice to the 90 degree barbed elbow fitting closest to the front of the ventilator.
- 6. Connect clear tubing with black stripe to the 90 degree barbed elbow fitting second closest to the front.
- 7. Connect green tubing to the same 90 degree barbed elbow fitting third closest to the front of the ventilator.
- 8. Connect the clear 1/8 tubing to the brass elbow.
- 9. Referring to the instructions in this chapter, re-install the following components:
  - UIM and the top cover

## Fan Assembly P/N 15891

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the top cover.
- 2. Disconnect the fan cable from the wire harness of the TCA board.
- 3. Pop off the fan filter cover.
- 4. Remove the filter and the filter cover.
- 5. Remove the (4) 2.5" Phillips screws holding the fan filter housing. Remove the fan assembly and the fan cover.

- 1. Insert the honeycomb shield into the shroud.
- 2. Insert the fan assembly into the shroud, ensuring the wire assembly is facing towards the lower outside corner of the ventilator.
- 3. Align the fan cover on the outside of the chassis and the fan assembly on the inside using (1) screw to assist in positioning.
- 4. Secure both the fan cover and the fan assembly with (4) 2.5" Phillips screws.
- 5. Connect the fan cable to the TCA wire harness.
- 6. Tuck the wire harness along side the fan between the fan and the outer wall of the unit.
- 7. Place the filter inside the filter cover so that the locking tabs face the chassis and snap the filter cover into place.
- 8. Referring to the instructions in this chapter, install the following components:
  - UIM and the top cover.

## Power Supply P/N 68273



Figure 4.14 Power Supply

#### Tools Required

- Phillips #2 screwdriver with 8" shaft
- 11/32 nut driver
- 3/8 nut driver
- Side cutters
- Needle-nosed pliers

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components in the following order:
  - UIM and the top cover.

## Note

To gain access to the power supply, the aluminum shield under the plastic top cover must also be removed. There are (19) SEMS screws; (3) on the left, (5) on the right and (11) on top.

- Fan assembly
- EPM board (It is not necessary to remove this board when gaining access to the power supply. Please see instructions at the end of this procedure).
- Scroll pump/compressor.
- 2. Cut and remove all cable ties that secure the wire assemblies to the power shield.
- 3. Disconnect the 5-pin connector at J2.

## NOTE

It is suggested to label the (2) remaining (white) wires connected to the 4-pin terminal block as #1 and #3 as printed on the power supply circuit board.

- 2. Using a Phillips screwdriver, loosen the screws of the terminal block that secures wires #1 and #3 and remove.
- 3. Remove and label blue (neutral) and brown (load) wires on the power entry module.
- 4. Remove the (4) 11/32 KEPS nuts (2) on the left and (2) on the right. Pull out the power supply including the brass bracket. Part number:

#### Installation

- 1. If installing a new power supply, you will need to install (4) cable mounts on the new power supply. Use the old power supply as a model for the location on the new power supply.
- 2. Reconnect the (3) wires from the power entry module to the 3-pin terminal block of the power supply board.
- Seat the power supply and the bracket into the chassis and secure with (4) 11/32 KEPS nuts;
   (2)
- 4. on the left and (2) on the right.
- 5. Reconnect the (2) wires, # 1 and #3 from the terminal block.
- 6. Reattach the 5-pin connector to the power supply board location J2.
- 7. Replace the cable ties.
- 8. Reinstall lock washer, ground wire and nut securely.
- 9. Secure wiring harness with cable ties to power supply shield.
- 10. Referring to the instructions in this chapter, install the following components in the order listed:
  - Scroll Pump / Compressor
  - EPM board. (If not removed, return the EPM to its' position on the (2) mounting studs and secure using the (2) Phillips screws.
  - Fan assembly.
  - Scroll compressor.
  - UIM and the top cover.

#### Table 4.1: AVEA Power supply specifications

| INPUT                     | OUTPUT                                          |
|---------------------------|-------------------------------------------------|
| TB1                       | TB2                                             |
| 6-32 3 pin terminal block | 6-32 4 pin terminal block 0.375 ctr             |
| PIN 1 AC line             | Bus bar with 10-32 screw on high current models |
| Pin 2 AC neutral          | Pins 1 and 2 +V out                             |
| Pin 3 AC ground           | Pins 3 and 4 Return                             |
|                           | 16A max recommended current per connector pin   |
| Signala 12                |                                                 |

Signals J2 Amp PCB Header P/N 640465-5 

 Mating connector P/N 640621-5
 Pin 1 DC Good

 Pin 2 Power fail
 Pin 3 Ext off

 Pin 4 + Sense
 Pin 5 -Sense

 Fan
 AMP PCB Header P/N 640465-2

 Mating Connector P/N 640621-2
 Maximun screw protrusion above chassis = 0.120"

 Mating Connector P/N 640621-2
 Weight 2.9 lbs (1.32Kg) max.

 Pin 2 +
 Pin 2 +

#### To Clear EPM Board From Workspace During Replacement Of Power Supply:

- 1. Remove the (2) Phillips screws that secure the EPM to the center bracket.
- 2. Pull firmly, straight up. This action will release the EPM board from the mounting studs.
- 3. Without disconnecting any tubes, hoses or wires, place the EPM board into a static bag and set out of the way of the compressor and power board.

## Exhalation Valve and Flow Sensor Assembly P/N 51000-40076

Figure 4.15 Exhalation Valve and Flow Sensor Assembly

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the top cover.
  - Exhalation filter & watertrap.
- 2. Remove the third (and last) screw from the exhalation assembly cover of the left hand corner of the AVEA. Remove the cover.
- 3. Pull the locking shroud of the connector back and disconnect the sensor from the chassis.
- 4. Grasp the rubber elbow and slide it towards you and remove.
- 5. Gently remove the exhalation flow sensor by pulling straight towards you.
- 6. Push in the locking tab on the exhalation valve body and twist the body counterclockwise to remove.
- 7. Remove the silicon diaphragm from the exhalation valve assembly.
- 8. Disconnect the two wires from the wiring harness.
- 9. Carefully cut the cable tie retaining the exhalation valve.

- 10. Remove the (2) KEPS nuts and Phillips screws from the top and bottom of the exhalation valve assembly and the bracket. (recommend using a 3/8 box or open-end wrench for this task)
- 11. Remove the exhalation valve by sliding it out of the brackets and slightly spreading the mount so as not to damage the wires..

#### CAUTION

Ensure that you do not damage the small wires when removing the exhalation valve.

#### Installation

1. Position the exhalation assembly onto the chassis by lining up the screw holes on the front panel and sliding it into the exhalation valve bracket.

#### CAUTION

Ensure that you do not damage the small wires when installing the exhalation valve.

- 2. Install the (2) Phillips screws through the top and bottom of the exhalation valve assembly and the bracket and secure with (2) KEPS nuts.
- 3. Connect the cables to the wiring harness.
- 4. 4. Leaving room for the gas delivery engine, run the wire harness under the tab in the exhalation valve assembly bracket.
- 5. Insert the silicon diaphragm into the exhalation valve body by seating it into the lip with the point out.
- 6. Install the exhalation valve body; line up the flange on the valve body with the tabs on the receptacle and twist clockwise until secure.
- 7. Install the exhalation flow sensor by sliding it into the gasket with the tubing facing up and ensure the tubing is under the retaining notch.
- 8. Slide the blue rubber elbow sensor boot in by lining it up with the grooves.
- 9. Attach the connector to the chassis by pulling back the plastic sleeve and pushing it into place.
- 10. Push the locking clip back to secure the sensor.
- 11. Reinstall the exhalation assembly cover using 2 of the 3 screws (side and bottom front).
- 12. Referring to the instructions in this chapter, re-install the following components:
  - UIM and the top cover.

## Heater Assembly P/N 51000-40824

#### Removal

- 1. Remove the (4) Phillip #1screws holding the shield.
- 2. Remove (2) KEP nuts at the base.
- 3. Disconnect the 3-pin and 2-pin connectors and label.
- 4. Remove (2) 11/32 KEP nuts on the back of the front panel shielding the flow sensor PCB.
- 5. Remove (2) Phillips #2 screws from the front panel.

82

- 6. Remove corner piece
- 7. Remove screws (4) Phillip #1 holding shield.
- 8. Remove heater assembly
- 9. The top cover.
  - Exhalation Valve and Flow Sensor Assembly
  - Remove the screws holding the shield and remove shield.
  - Remove heater assembly

#### Installation

When removing and installing the corner and heater assembly, do not replace the plastic piece of the front panel or the bottom piece of the ventilator until corner/heater assembly is in place.

- 1. Referring to the instructions in this chapter, install the following components:
- 2. Reinstall heater assembly into the shield using (4) Phillips #1 screws.
- 3. Attach corner to the base assembly using (3) KEPS nuts and (2) Phillips #2 screws.
  - Re-attach heater.
  - Re-attach shield.
  - Exhalation Valve and Flow Sensor Assembly
  - UIM and the top cover.

## Microswitch, Top Cover P/N 68294



Figure 4.16 Top Cover Microswitch

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the top cover.
- 2. Remove attachment screws, disconnect and lift off the microswitch.

- 1. Reattach using screws provided. Re-connect the wiring.
- 2. Referring to the instructions in this chapter, install the following components:
  - UIM and the top cover.

## EMI Shield

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the top cover.
- 2. Remove the protective box cover by removing the (1) Phillips screw.
- 3. Remove the EMI shield protective box by removing the (2) KEPS nuts that secure it.

#### Installation

- 1. Replace the EMI shield protective box and secure it with (2) KEPS nuts.
- 2. Replace the protective box cover and secure with (1) Phillips screw.
- 3. Referring to the instructions in this chapter, install the following components:
  - UIM and the top cover.

## Front Interface Panel P/N 51000-40635

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the top cover.
  - Ventilator assembly (from the base).
  - Gas delivery engine assembly.
- 2. Remove the flow sensor cover by removing the (3) SEMS screws.
- 3. Remove the (2) KEPS nuts, the EMI shield, brass bracket, and ribbon cable.
- 4. Turn the unit over and support it on 2x4 pieces of wood so as not to put the entire weight of the unit on the 4 standoffs.
- 5. Remove (7) Phillips screws; (2) from the lower back panel and (5) from the bottom panel.
- 6. Remove bottom panel
- 7. Remove (2) screws from the top of the front panel.
- 8. Loosen (2) KEPS nuts from the bottom that hold the front panel.
- 9. Pull off the front panel.
- 10. Loosen (1) KEPS nut from the bottom and (4) screws on the front panel.
- 11. Remove the blue tubing from the nebulizer to the front panel.
- 12. Gently pull the blue ribbon cable through the narrow slot at the top center of the front interface panel and the rest of the wiring through the recessed compartment in the chassis.

- 1. Gently feed the blue ribbon cable through the narrow slot at the top center of the front panel and the wiring through the recessed compartment in the chassis.
- 2. Attach the blue tubing from the nebulizer to the front panel.

- 3. Tighten (1) KEPS nut on the bottom and (4) screws on the front interface panel.
- 4. Position the front panel and install (2) KEPS nuts on the bottom and (2) screws on the bottom of the front panel.
- 5. Position the back panel and install (7) Phillips screws; (2) on the lower back panel and (5) on the bottom panel.
- 6. Turn the unit over.
- 7. Install the (2) KEPS nuts, the EMI shield, brass bracket, and ribbon cable.
- 8. Attach the flow sensor cover by installing the (3) SEMS screws.
- 9. Referring to the instructions in this chapter, install the following components:
  - Ventilator assembly onto the base.
  - Gas delivery engine assembly.
  - UIM and the top cover.

## Driver transition board P/N 51000-40829



Figure 4.17 Driver transition board

#### Removal

- 1. Referring to the instructions in this chapter, remove the following:
  - UIM and the top cover.
  - Gas delivery engine assembly.
  - Fan assembly connections
  - Scroll compressor connections.
  - Front interface panel connections.
- 2. Disconnect the wiring to the power supply board and the battery.

- 3. Remove the spiral wrap to the alarm connector, and feed the wires out of the hole in the chassis one connector at a time.
- 4. Remove the (2) Phillips screws and flat washers from the chassis.
- 5. Remove the Phillips screws on the board bracket and remove the board from the bracket.

#### Installation

- 1. Mount the driver transition board into the first half of the bracket; place the board on the three round threaded studs with the cables spread outward, and secure the (3) Phillips screws.
- 2. Place the flat side of the other half of the bracket on the two mounting pins and slide it down.
- 3. Install (1) Phillips screw from the front to the rear of the bracket and leave finger tight.
- 4. Align the bracket over the two threaded holes in the chassis and install (2) Phillips screws using flat washers.
- 5. Align the driver transition board; slide in the gas delivery engine assembly, carefully connect it to the driver transition board, adjusting the bracket as necessary.
- 6. Once the alignment is complete, secure the driver transition board and the height adjustment pin on the bracket, and then remove the gas delivery engine assembly.
- 7. Feed the top wiring harness through the small hole in the front right of the chassis, one connector at a time.
- 8. Install the spiral wrap, leaving the alarm connector hanging off to the side.
- 9. Make the appropriate connections to the power supply board and to the battery.
- 10. Referring to the instructions in this chapter, install the following components:
  - Front interface panel.
  - Scroll compressor.
  - Fan assembly.
  - Gas delivery engine assembly.
  - UIM and the top cover.

## Alarm Speaker P/N 51000-40818

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the top cover.
  - Ventilator assembly from the base.
  - Bottom cover.
  - Front panel.
- 2. Turn the unit over and support it on 2x4 pieces of wood to avoid putting the entire weight of the unit on the 4 standoffs.
- 3. Disconnect the wire to the driver transition board.
- 4. Remove the (2) 11/32 KEPS nuts that secure the speaker and lift the speaker off of the threaded studs.

#### Installation

- 1. Position the speaker onto the two threaded studs and secure with (2) 11/32 KEPS nuts.
- 2. Connect the wire to the driver transition board.
- 3. Referring to the instructions in this chapter, install the following components:
  - Bottom cover.
  - Front panel.
  - Ventilator assembly onto the base.
  - UIM and the top cover.

## Nebulizer P/N 51000-40818

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the top cover.
  - Ventilator assembly from base.
  - Bottom cover.
- 2. Cut tie wraps on the nebulizer booster.
- 3. Remove wire harness.
- 4. Disconnect the two solenoid connectors to the driver transition board.
- 5. Disconnect the tubing from the accumulator.
- 6. 6 Remove the (3) KEPS nuts that secure the nebulizer; (2) on the left side and (1) on the right, Maneuver the nebulizer out from behind the accumulator.
- 7. Disconnect blue tube just in front of the solenoid.

- 1. Turn the unit over and support it on 2x4 pieces of wood so as not to put the entire weight of the unit on the 4 standoffs.
- 2. Position the nebulizer onto the three threaded studs and using ong needle-nosed pliers, secure with (3) 11/32 KEPS nuts; (2) on the left side and (1) on the right.
- 3. Connect the tubing from the accumulator to the left side of the nebulizer.
- 4. Feed the tubing from the gas delivery engine through the U-shaped notch on the left side of the chassy and connect it to the nebulizer.
- 5. Connect the two solenoid connectors from the driver transition board.
- 6. Referring to the instructions in this chapter, install the following components:
  - Bottom cover.
  - Gas delivery engine assembly.
  - UIM and the top cover.



Service Manual

## Accumulator P/N 51000-40748

#### Removal

- 1. Referring to the instructions in this chapter, remove the following components:
  - UIM and the top cover.
  - Gas delivery engine assembly.
  - Ventilator assembly from base.
  - Bottom cover.
  - Front panel.
  - Speaker.
  - Nebulizer.
- 2. Disconnect the solenoid cable from the driver transition board.
- 3. Disconnect the tubing from the solenoid drain panel.
- 4. Remove the (4) 11/32 KEPS nuts; one from each corner.
- 5. Remove the accumulator, twisting to carefully remove the gas delivery engine supply tubing out of the slot on the bottom left of the chassis.

- 1. Turn the unit over and support it on 2x4 pieces of wood so as not to put the entire weight of the unit on the 4 standoffs.
- 2. Rotate the supply tube to the gas delivery engine into the slot on the bottom left of the chassis.
- 3. Position the accumulator by sliding the two notches over the threaded studs at the bottom and seating the top onto the two mounting studs.
- 4. Secure the accumulator with (4) 11/32 KEPS nuts, one on each corner.
- 5. Connect the tubing to the solenoid drain panel.
- 6. Connect the solenoid cable to the driver transition board.
- 7. Referring to the instructions in this chapter, install the following components:
  - Speaker.
  - Bottom cover.
  - Front panel.
  - Nebulizer.
  - Ventilator assembly onto the base.
  - Gas delivery engine assembly.
  - UIM and the top cover.

# Chapter 5 Operational Verification Procedure (OVP)

#### WARNING

Verification Testing should always be done off patient.

## Set up

1

Plug the AVEA into a suitable AC Power source and connect an adult patient circuit and an adult test lung.

## NOTE

Manufacturer recommends the use of a nondisposable adult patient circuit and test lung in testing VIASYS ventilatory equipment:.

- 2 Turn power on.
- 3 Select *New Patient* when prompted. The *Safety Valve Open* alarm will activate. Press *Patient Accept*. (This will re-set the controls to the default settings shown at the end of this procedure).
- 4 Select *Patient Size* and select *Adult*. Press *Size Accept*. Leave the settings at the defaults and verify that a Vent-Inop. Alarm is not activated.
- 5 Ensure that *Leak Comp* and *Humidifier active* are off. Press *Setup Accept*.

## **User Verification Tests (UVT)**

The following tests are part of the User Verification testing performed before connection to a new patient.

#### The POST test

The first part of the testing, the **POST** or Power On Self Test is transparent to the user and will only message if the ventilator encounters an error. This test is run automatically and performs the following checks:

- Processor Self Check
- ROM Check Sum
- RAM Test

The POST will also check the audible alarms and the LEDs at which time the audible alarm sounds and the LEDs on the User Interface Module flash. Normal ventilation commences at the culmination of the POST.

#### Extended Systems Test (EST)

- 1 Connect a medical grade oxygen source to the unit (20 TO 80 psi).
- 2 Press the Setup membrane button to access the Setup screen.
- 3 Press *Size Accept* to pass the next displayed screen.



Figure 5.1

4 Press the EST touch screen icon to highlight. (A message will appear instructing you to remove the patient and block the patient circuit wye.) Remove the test lung and plug the wye connector.





5 After confirming that the patient has been disconnected and the circuit wye blocked press the Continue (Cont) button. (The ventilator will perform the EST and display a countdown clock.)

| EXTENDED SYSTEM TEST     |              |  |
|--------------------------|--------------|--|
| Leak Test:               | PASSED.      |  |
| Circuit Compliance Test: | PASSED.      |  |
| O2 Sensor Calibration:   | IN PROGRESS. |  |
| 45 sec 🤇                 | CANCEL       |  |
|                          |              |  |

Figure 5.3

During this test the ventilator will perform:

- Patient circuit leak test
- Patient circuit compliance measurement
- Two point calibration of the oxygen sensor

The patient circuit compliance measurement and leak test are performed simultaneously with the oxygen sensor calibration. The maximum time for the EST is 90 seconds.

To restart the EST at any time select the Cancel button to return to the set up screen.

| EXTENDED SYSTEM T                           | EST     |
|---------------------------------------------|---------|
| Leak Test:                                  | PASSED. |
| Circuit Compliance Test:                    | PASSED. |
| O2 Sensor Calibration:                      | PASSED. |
| CONTINUE                                    |         |
| <b>F</b> <sup>1</sup> <b>F</b> <sup>1</sup> |         |

Figure 5.4

After each test is complete the ventilator will display a "Passed" or "Failed" message next to the corresponding test.

Once the test is complete press the continue button to return to the set up screen.

## Note

If you do not connect the ventilator to an oxygen supply, the O2 Sensor Calibration will immediately fail.

#### Manual Alarms Testing

This testing verifies the following alarms:

Low PEEP alarm High Ppeak alarm High Ppeak, Sust Low Ve alarm High Ve alarm High Vt alarm Low Vt alarm Low O<sub>2</sub> alarm High O<sub>2</sub> alarm Low Ppeak alarm Loss of AC alarm Circuit Disconnect High Rate Alarm Apnea Interval alarm

## CAUTION

Although failure of any of the above tests will not prevent the ventilator from functioning, it should be checked to make sure it is operating correctly before use on a patient.

## Note

To ensure proper calibration of the oxygen sensor, you should always perform an EST prior to conducting Manual Alarms Testing.

### WARNING

User Verification Testing should always be done off patient.

### CAUTION

Following each alarm verification test, ensure that the alarm limits are reset to the recommended levels shown in this chapter before proceeding to the next test.

#### Table 5.1: Test Setup Requirements

|                     | Adult Setting          | Pediatric Setting | Neonate Setting |
|---------------------|------------------------|-------------------|-----------------|
| Air Supply Pressure | 20-80 psig (2.1 bar)   | Same              | Same            |
| O2 Supply Pressure  | 20-80 psig (2.1 bar)   | Same              | Same            |
| AC Line Voltage     | Varies Internationally | Same              | Same            |
| Patient Circuit     | 6' (2 m) Adult         | 6' (2 m) Adult    | Infant          |
| Compliance          | 20 ml/cmH2O            | 20 ml/cmH2O       | N/A             |
| Resistance          | 5 cmH20/L/sec          | 5 cmH20/L/sec     | N/A             |

To conduct Manual Alarms Testing on the AVEA ventilator using default settings, complete the following steps (A table describing the default settings for Adult, Pediatric and Neonatal patient sizes is included in this manual).

#### Table 5.2: Ventilation Setup

| Vent Setup                                           | Adult Setting | Pediatric Setting | Neonate Setting                  |
|------------------------------------------------------|---------------|-------------------|----------------------------------|
| ET tube Diameter                                     | 7.5 mm        | 5.5 mm            | 3.0 mm                           |
| ET Tube Length                                       | 30 cm         | 26 cm             | 15 cm                            |
| Artificial Airway<br>Compensation                    | Off           | Off               | Off                              |
| Leak Compensation                                    | Off           | Off               | Off                              |
| Circuit<br>Compliance<br>Compensation<br>(Circ Comp) | 0.0 ml/cmH2O  | 0.0 ml/cmH2O      | ml/cmH2O NOT active in Neonates. |
| Humidification                                       | Active On     | Active On         | Active On                        |
| Patient Weight                                       | 1 kg          | 1 kg              | 1 kg                             |

Table 5.3: Primary Controls

5: OVP

|                                         | Adult Setting | Pediatric Setting | Neonate Setting       |
|-----------------------------------------|---------------|-------------------|-----------------------|
| Breath Type/Mode                        | Volume A/C    | Volume A/C        | TCPL A/C              |
| Breath Rate (Rate)                      | 8 bpm         | 12 bpm            | 20 bpm                |
| Tidal Volume<br>(Volume)                | 500 ml        | 100 ml            | N/A                   |
| Peak Flow                               | 60 L/min      | 20 L/min          | 8 L/min               |
| Inspiratory Pressure<br>(Insp Pres)     | 15 cmH₂O      | 15 cmH₂O          | 15 cmH <sub>2</sub> O |
| Inspiratory Pause<br>(Insp Pause)       | 0.0 sec       | 0.0 sec           | 0.0 sec               |
| Inspiratory Time (Insp<br>Time)         | 0.5 sec       | 0.5 sec           | 0.35 sec              |
| PSV                                     | 0 cmH₂O       | 0 cmH₂O           | 0 cmH₂O               |
| PEEP                                    | 6 cmH₂O       | 6 cmH₂O           | 3 cmH₂O               |
| Inspiratory Flow<br>Trigger (Flow Trig) | 1.0 L/min     | 1.0 L/min         | 1.0 L/min             |
| %O <sub>2</sub>                         | 21%           | 21%               | 21%                   |

#### Table 5.4: Advanced Settings

| Adv. Settings                               | Adult Setting | Pediatric Setting      | Neonate Setting |
|---------------------------------------------|---------------|------------------------|-----------------|
| Vsync                                       | 0 (off)       | 0 (off)                | N/A             |
| Vsync Rise                                  | 5             | 5                      | N/A             |
| Sigh                                        | 0 (off)       | 0 (off)                | N/A             |
| Waveform                                    | 1 (Dec)       | 1 (Dec)                | 1 (Dec)         |
| Bias Flow                                   | 2.0 L/min     | 2.0 L/min              | 2.0 L/min       |
| Inspiratory Pressure<br>Trigger (Pres Trig) | 1.0 cmH₂O     | 1.0 cmH <sub>2</sub> O | 1.0 cmH₂O       |
| PSV Rise                                    | 5             | 5                      | 5               |
| PSV Cycle                                   | 25%           | 25%                    | 10%             |
| PSV Tmax                                    | 5 sec         | 5 sec                  | 1.5 sec         |
| Machine Volume<br>(Mach Vol)                | 0 L           | 0 ml                   | 0 ml            |
| Volume Limit<br>(Vol Limit)                 | 2.50 L        | 500 ml                 | 300.0 ml        |
| Inspiratory Rise (Insp<br>Rise)             | 5             | 5                      | 5               |

| Adv. Settings | Adult Setting | Pediatric Setting | Neonate Setting |
|---------------|---------------|-------------------|-----------------|
| Flow Cycle    | 0% (off)      | 0% (off)          | 0% (off)        |
| T High PSV    | Off           | Off               | N/A             |
| T High Sync   | 0%            | 0%                | N/A             |
| T Low Sync    | 0%            | 0%                | N/A             |

Table 5.5: Alarm Settings

|                                              | Adult Setting        | Pediatric Setting    | Neonate Setting      |
|----------------------------------------------|----------------------|----------------------|----------------------|
| High Rate                                    | 200 bpm              | 200 bpm              | 200 bpm              |
| High Tidal Volume<br>(High Vt)               | 3.00 L               | 1000 ml              | 300 ml               |
| Low Tidal Volume<br>(Low Vt)                 | 0.0 L                | 0.0 ml               | 0.0 ml               |
| Low Exhaled<br>Minute Volume<br>(Low Ve)     | 0.0 (off)            | 0.0 (off)            | 0.0 (off)            |
| High Exhaled<br>Minute Volume<br>(High Ve)   | 30.0 L/min           | 30.0 L/min           | 5.0 L/min            |
| Low Inspiratory<br>Pressure (Low<br>Ppeak)   | 3 cmH <sub>2</sub> O | 3 cmH <sub>2</sub> O | 3 cmH <sub>2</sub> O |
| High Inspiratory<br>Pressure (High<br>Ppeak) | 75 cmH₂O             | 75 cmH₂O             | 50 cmH₂O             |
| Low PEEP                                     | 3 cmH <sub>2</sub> O | 3 cmH <sub>2</sub> O | 1 cmH <sub>2</sub> O |
| Apnea Interval                               | 20 sec               | 20 sec               | 20 sec               |

Table 5.6: Auxiliary Controls

|                                 | Adult Setting | Pediatric Setting | Neonate Setting |
|---------------------------------|---------------|-------------------|-----------------|
| Manual Breath                   |               |                   |                 |
| Suction                         |               |                   |                 |
| ↑ <b>O2</b>                     |               |                   |                 |
| Nebulizer                       |               |                   |                 |
| Inspiratory Hold<br>(Insp Hold) |               |                   |                 |
| Expiratory Hold<br>(Exp Hold)   |               |                   |                 |

| 5: OVP | AVEA Ventilator Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97                                                                                     |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1.     | Make the appropriate connections for air and O2 gas supply. Connect the power cor appropriate AC outlet. Attach an appropriate size patient circuit and test lung to the                                                                                                                                                                                                                                                                                                                                          | d to an<br>/entilator.                                                                 |
| 2.     | Power up the ventilator and select "NEW PATIENT" when the Patient Select Screen<br>Accept this selection by pressing "PATIENT ACCEPT". This will enable default settir<br>Manual Alarms Test.                                                                                                                                                                                                                                                                                                                     | appears.<br>ngs for the                                                                |
| 3.     | Select the appropriate patient size for your test (Adult, Pediatric or Neonate) from the Select Screen. Accept this selection by pressing "SIZE ACCEPT". Set <i>Humidifier Ac</i>                                                                                                                                                                                                                                                                                                                                 | e Patient Size<br>ctive off.                                                           |
| 4.     | Make any desired changes or entries to the Ventilation Setup Screen and accept the<br>"SETUP ACCEPT".                                                                                                                                                                                                                                                                                                                                                                                                             | ese by pressing                                                                        |
| 5.     | Press Alarm Limits button on the upper right of the user interface.                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |
| 6.     | Verify that no alarms are active and clear the alarm indicator by pressing the alarm r the upper right of the user interface.                                                                                                                                                                                                                                                                                                                                                                                     | eset button on                                                                         |
| 7.     | Set the % O <sub>2</sub> control to 100%. Disconnect the Oxygen sensor from the back panel of<br>and verify that the Low O <sub>2</sub> alarm activates. Return the O <sub>2</sub> control setting to 21% with<br>disconnected from the rear panel. Remove sensor from back panel. Provide blow-by<br>from an external oxygen flow meter. Verify that the High O <sub>2</sub> alarm activates. Return t<br>21%, reconnect the Oxygen sensor to the back panel. Clear all alarm messages by<br>alarm reset button. | f the ventilator<br>the sensor still<br>to the sensor<br>he % $O_2$ to<br>pressing the |
| 8.     | Set <i>PEEP</i> to 0. Set <i>Low PEEP</i> alarm to 0. Disconnect the patient wye from the test that the Low Ppeak alarm activates, followed by the Circuit Disconnect alarm. This s should activate after the default setting of 20 seconds for the apnea interval has elap Reconnect the test lung to the circuit clear the alarm by pressing the reset button.                                                                                                                                                  | lung. Verify<br>econd alarm<br>osed.                                                   |
| 9.     | Disconnect the AC power cord from the wall outlet. Verify that the Loss of AC alarm Reconnect the AC power cord. Clear the alarm by pressing the reset button.                                                                                                                                                                                                                                                                                                                                                    | activates.                                                                             |
| 10.    | Occlude the exhalation exhaust port. Verify that the High Ppeak alarm activates, follo<br>seconds later by the activation of the High Ppeak, Sust. alarm.                                                                                                                                                                                                                                                                                                                                                         | owed 5                                                                                 |
| 11.    | Set the control setting for rate to 1 bpm. Verify that Apnea Interval alarm activates at setting of 20 seconds. Return the control setting to its default value and clear the ala the reset button.                                                                                                                                                                                                                                                                                                               | ter the default<br>rm by pressing                                                      |
| 12.    | Set the Low PEEP alarm setting to a value above the default control setting for PEE ventilator. Verify that the Low PEEP alarm activates. Return the alarm setting to its c and clear the alarm by pressing the reset button.                                                                                                                                                                                                                                                                                     | P on your<br>lefault value                                                             |
| 13.    | 13.Set the High Ppeak alarm setting to a value below the measured peak pressure or ventilation, the default control setting for Inspiratory Pressure on your ventilator. Veri High Ppeak alarm activates. Return the alarm setting to its default value and clear the pressing the reset button.                                                                                                                                                                                                                  | or in neonatal<br>fy that the<br>le alarm by                                           |
| 14.    | 14.Set the Low Ve alarm setting to a value above the measured Ve on your ventilate<br>the Low Ve alarm activates. Return the alarm setting to its default value and clear th<br>pressing the reset button.                                                                                                                                                                                                                                                                                                        | or. Verify that<br>e alarm by                                                          |
| 15.    | 15.Set the High Ve alarm setting to a value below the measured Ve on your ventilate<br>the High Ve alarm activates. Return the alarm setting to its default value and clear th<br>pressing the reset button.                                                                                                                                                                                                                                                                                                      | or. Verify that<br>ne alarm by                                                         |
| 16.    | Set the High Vt alarm setting to a value below the set Vt on your ventilator. Verify the<br>alarm activates. Return the alarm setting to its default value and clear the alarm by p<br>reset button.                                                                                                                                                                                                                                                                                                              | at the High Vt<br>pressing the                                                         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |

## NOTE

98

Repeat steps 11 through 17 with a pediatric circuit and test lung. Repeat steps 11 through 17 with an infant circuit and test lung.

## CAUTION

Although failure of any of the above tests will not prevent the ventilator from functioning, it should be checked to make sure it is operating correctly before use on a patient.

## User Interface Module (UIM) Verification

#### Membrane Switch Tests

These tests verify the functioning of the membrane buttons surrounding the touch screen:

- Alarm Silence (LED) Disconnect the test lung from patient circuit. An audible alarm sounds. Press the Alarm Silence button and verify that the audible portion of the alarm is disabled for 2 minutes (± 1 second)or until the Alarm Silence button is pressed again.
- 2. Alarm Reset Reconnect the test lung to the patient circuit. The alarm message should turn yellow. Press the Reset button to cancel the visual alarm message.
- 3. Alarm Limits Press the Alarm Limits screen button. Press the button again to toggle the screen on and off.
- 4. Manual Breath Press this button during the expiration phase of a breath. Verify that the ventilator delivers a single mandatory breath at current ventilator settings.
- Suction (LED) Press the Suction button, both Suction and ↑ %O<sub>2</sub> LEDs should Illuminate, also LOSS, O2 appears on the screen in the alarm window. Press Suction again, both Suction and ↑ %O<sub>2</sub> LEDs should disappear, press Reset to clear visual alarm.
- Increase O2 Press the Increase O2 button (↑ %O<sub>2</sub>) Verify that the LED Illuminates, The LOSS O2 alarm activates. Press the button again and verify that the LED turns off. Press RESET to clear the visual alarm.
- 7. Accept Change any parameters, press accept and verify the new setting is entered.
- 8. Cancel Change any parameters, press Cancel ensure new setting is canceled.
- 9. Expiratory Hold Press the Expiratory Hold button. The pressure waveform should display as a flat line for about 20 seconds in Adult and Pediatric Patient modes.
- 10. Inspiratory Hold Allow to cycle then press this soft key & it will plateau at the top of the inspiratory cycle in the adult and pediatric patient modes.
- 11. Nebulizer Connect wall air to unit 20 to 80 psi. Press the Nebulizer button, verify that nebulization is synchronized with breath rate. You will feel air coming out of the nebulizer fitting. Lower peak flow < 14L/min and "neb not available" should appear.
- 12. Mode Press the Mode button. Verify that the Mode sub screen appears.
- 13. Patient Size Select a Patient size from the menu. Ensure the correct LED is displayed for the patient size currently selected. Change patient size to Pediatric and then to Neonate. Verify correct LED display for each one.
- 14. Panel Lock Press the Lock button and verify no access to screen functions. The manual breath, suction, increase O2 and alarm silence buttons **are** functional during panel lock.
- 15. Set-up Press the Setup button and verify that the Setup screens appears. Press Size Accept, Press Set up Accept.
- 16. Advanced Settings Press the Advanced Settings screen button. Toggle the screen on & off. Verify that the screen responds correctly.
- 17. Event Press Events and verify the sub screen appears, press again to check that the Main screen reappears.
- 18. Freeze Press the Freeze button. All graphics screen update should cease, the wave forms freeze. Measurement bar appears. Press again and ensure normal refresh of the waveform sweep continues in the Main screen.

 Screens and Main buttons - Press the Screens button and the Screen Select screen should appear. Press Monitor, the Monitor screen should display. Press Main and the screen should go back to Main screen.

## Field replacement and test of the AVEA Compressor Assembly

Refer to chapter 4 for disassembly of the User Interface Module (UIM) and top cover. Follow the instructions given in Chapter 4 to remove and replace the compressor assembly. Re-assemble the AVEA and test using this procedure.

The compressor sub-system on the AVEA includes a Compressor PC Board and the Compressor. The sub-assembly is tested and calibrated at the factory and designed to be field installed in the AVEA ventilator. This procedure verifies that the test ventilator delivers the expected minute ventilation when the compressor is supplying air to the ventilator (40 L/min). It also verifies that the compressor activates upon loss of the wall air supply and de-activates when that supply is restored.

#### Equipment Required

- • AVEA Ventilator (Test ventilator)
- Adult Patient Circuit
- • Device for measuring Parabolic Airway Resistance Rp5 (Usually available with test lung)
- • Adult Test Lung Manley or Siemens recommended
- • Regulated Air Supply Range > 30 psig

## Note

All equipment is as stated or equivalent .

#### Test Procedure

- 1. Attach the adult patient circuit and test lung to the test ventilator. Connect to a regulated wall air supply as indicated above.
- 2. Turn on the ventilator and set parameters shown in the table below.
- 3. Turn off the wall air supply.
- 4. Verify that the compressor activates
- 5. Verify that the "scroll" symbol is displayed in the bottom right corner of the UIM
- 6. Verify ventilator continues to ventilate and no alarms are activated
- 7. Allow ventilator to continue to cycle using the compressor for approximately two minutes.
- 8. Disconnect the expiratory limb of circuit. The Circuit Disconnect and Low Ppeak alarms should activate.

## NOTE:

Leave expiratory limb disconnected for remainder of test

9. Change the following ventilator settings:

| Control           | Setting    |
|-------------------|------------|
| Tidal Volume (Vt) | 2.0L,      |
| Rate              | 19 bpm,    |
| Peak Flow         | 150 L/MIN. |

- 10. Change the scale on Flow waveform graphic display to 300 L/min.
- 11. Allow ventilator to cycle for approximately two minutes then Press the Alarm Reset membrane button.
- 12. Verify that no alarms except for Circuit Disconnect and Low Ppeak are active
- 13. Press the Freeze button.
- 14. Verify the flow at the end of inspiration is between 67 and 83 L/min.
- 15. Re-connect wall air supply.
- 16. Verify compressor shuts off and ventilation continues uninterrupted using the wall air supply.

#### Table 5.7: Test Ventilator: (AVEA Ventilator)

| Setup             | Patient Size                                   | Adult        |
|-------------------|------------------------------------------------|--------------|
|                   | ET Tube Diameter                               | 7.5 mm       |
|                   | ET Tube Length                                 | 30 cm        |
|                   | Automatic Tube Compensation (ATC)              | Off          |
|                   | Leak Compensation                              | Off          |
|                   | Circuit Compliance Compensation<br>(Circ Comp) | 0.0 mL/cmH2O |
|                   | Humidification                                 | Off          |
|                   | Ideal Body Weight                              | 1 Kg         |
| Primary Controls  | Breath Type/Mode                               | Volume A/C   |
|                   | Breath Rate (Rate)                             | 15           |
|                   | BPM                                            |              |
|                   | Tidal Volume (Volume)                          | 0.50 L       |
|                   | Peak Flow                                      | 45 L/MIN     |
|                   | Inspiratory Pause (Insp Pause)                 | 0.00 second  |
|                   | Inspiratory Time (I-Time)                      |              |
|                   | PSV                                            |              |
|                   | PEEP                                           | 0 cmH2O      |
|                   | Inspiratory Flow Trigger (Flow Trig)           | 20.0 L/MIN   |
|                   | % O2                                           | 21 %         |
| Advanced Controls | Vsync                                          | 0 (Off)      |
|                   | Vsync Rise                                     |              |
|                   | Sigh                                           | 0 (Off)      |
|                   | Waveform                                       | Decel.       |
|                   | Bias Flow                                      | 2.0 L/MIN    |

|                    | Inspiratory Pressure Trigger (Pres        | 20.0 cmH2O   |
|--------------------|-------------------------------------------|--------------|
|                    | Trig)                                     |              |
|                    |                                           |              |
|                    |                                           |              |
|                    | PSV T <sub>max</sub>                      |              |
|                    | Machine Volume (Mach Vol)                 |              |
|                    | Volume Limit (Vol Limit)                  |              |
|                    | Inspiratory Rise (Insp Rise)              |              |
|                    | Flow Cycle                                |              |
| Alarm Settings     | High Rate                                 | 200 BPM      |
|                    | High Tidal Volume (High Vt)               | 3.00 L       |
|                    | Low Exhaled Minute Volume (Low Ve)        | 0 (Off)      |
|                    | High Exhaled Minute Volume (High Ve)      | 30.00 L/MIN  |
|                    | Low Inspiratory Pressure (Low PPEAK)      | 3 cmH2O      |
|                    | High Inspiratory Pressure (High<br>PPEAK) | 50 cmH2O     |
|                    | Low PEEP                                  | 0 cmH2O      |
|                    | Apnea Interval                            | 20 seconds   |
| Auxiliary Controls | Manual Breath                             |              |
|                    | Suction                                   |              |
|                    | <sup>a</sup> %O2                          | Not enabled  |
|                    | Nebulizer                                 | Not enabled  |
|                    | Inspiratory Hold (Insp Hold)              |              |
|                    | Expiratory Hold (Exp Hold)                |              |
|                    | Air Supply Pressure                       | > 30 psig    |
|                    | O2 Supply Pressure                        | > 30 psig    |
|                    | AC Line Voltage                           | 115 ± 10 VAC |

## Checkout Sheet – AVEA Compressor Replacement

| Date:               | Hours:              |
|---------------------|---------------------|
| Old Compressor S/N: | New Compressor S/N: |

AVEA Ventilator S/N: \_\_\_\_\_\_ UIM Serial Number: \_\_\_\_\_

| TEST                                                                                    | PASS FAIL |  |
|-----------------------------------------------------------------------------------------|-----------|--|
| Compressor Activates when wall air is turned off                                        |           |  |
| Scroll symbol displays when compressor activates                                        |           |  |
| Ventilator continues to cycle and no alarms initiate when wall air is turned off        |           |  |
| Circuit Disconnect and Low Ppeak alarms initiate when circuit is disconnected           |           |  |
| No other alarms active after ventilator settings are changed                            |           |  |
| Eng inspiration flow reading is between 67 and 83 L/min                                 |           |  |
| Compressor shuts off when wall air is turned on and ventilation continues uninterrupted |           |  |

I here by certify that the product with the above Serial Number has passed all operational specification and is certified for clinical use (The unit must be signed off before returning to clinical use.)

Signature: \_\_\_\_\_ Date: \_\_\_\_\_ Date: \_\_\_\_\_ Please complete this check sheet and fax to Regulatory Affairs at (760) 778-7301

Or mail to: Regulatory Affairs Department VIASYS Healthcare Critical care Division 1100 Bird Center Dr. Palm Springs, Ca. 92262

## Power Indicators and Charging Verification.



## **Battery Run Procedure**

Figure 5.5

- 1. Plug unit in, turn power on and adjust settings as follows:
  - Mode: Pediatric, Volume A/C a.
  - b. Settings: 40 BPM, Volume 200ml, Peak Flow 30 L/min, PEEP 5cmH2O, Flow Trigger 20 L/min, and FIO2 21%.
  - c. Advanced Settings: Vsync off, Waveform Square, Bias Flow 3 L/min, and Pressure Trigger 20cmH2O.
- 2. Verify that the Power Indicator "EXT" is illuminated and the Power Status is on AC (~).
- 3. Verify battery indicator LED's function and progressively charge from Red to Yellow to Green.
- 4. Disconnect AC Power.
- 5. Verify that unit runs on both internal and external batteries.
- 6. Verify that the Power status indicator "EXT" is illuminated indicating the ventilator is running on external battery.
- 7. Turn unit off.

## Air/Oxygen Inlet Pressure Verification.

## Note

All gases used for testing the AVEA should be verified clean medical grade gas sources. The ventilator should be operating in Adult patient mode with all settings at defaults.

- 1. Apply a regulated 50 PSI medical air source to the AVEA Air Inlet on the rear panel of the ventilator.
- 2. Apply regulated 50 PSI medical O2 Source to the O2 Inlet. (Verify the Air and O2 Inlet monitors read 50 PSI (+/- 3 PSIG). You can check this by scrolling to the air inlet and O2 inlet monitored parameter displays on the left of the Main screen or by pressing the screens button, selecting the Monitor screen and scrolling to the air inlet and O2 inlet parameters and *Accept*.

#### Figure 5.6

1

3. Lower the air inlet pressure gage to 18 psi. The compressor should turn on in a unit with compressor. In a unit with no compressor, the Low Air alarm should activate.





- 4. Change the O2 percentage to 60%.
- 5. Lower the O2 inlet pressure gage to 18 psi. The Low O2 alarm should activate.

## **Breath Rate Verification.**

## Note

Make sure the ventilator is set to Adult size and default settings.

- 1. Allow the ventilator to cycle and using a stopwatch, count the cycles and ensure the breath rate matches the Rate setting of the AVEA.
- 2. Verify the following rates( +/- 2)

5 bpm 20 bpm

60 bpm

## **Blending Accuracy Verification.**

## Note

Make sure the ventilator is set to Adult size and default settings.

Record the readings from the external O2 Analyzer and the AVEA FIO2 (% O2) monitor/setting. Check the FiO2 (% O2) readings per table below to compare set FIO2 to analyzed FIO2.

#### Table 5.8: FiO2 Readings

| O2%  | Tidal Volume | Breath Rate | Peak Flow | % Tolerance |
|------|--------------|-------------|-----------|-------------|
| 21%  | 0.50L        | 25          | 30 L/min  | +/- 3%      |
| 30%  | 0.10         | 50          | 30 L/min  | +/- 3%      |
| 30%  | 0.50         | 25          | 30 L/min  | +/- 3%      |
| 60%  | 0.10         | 50          | 30 L/min  | +/- 3%      |
| 60%  | 0.50         | 25          | 100 L/min | +/- 3%      |
| 90%  | 0.10         | 50          | 30 L/min  | +/- 3%      |
| 90%  | 0.50         | 25          | 30 L/min  | +/- 3%      |
| 100% | 0.50         | 25          | 30 L/min  | +/- 3%      |

## **PEEP Verification**

- 1. Connect an Adult test lung and accept the default settings.
- 2. Change the Rate to 4 bpm. Using the Paw (cmH2O) portion of the wave form screen, freeze and measure baseline pressures at each of the following PEEP settings: (The tolerance is +/- 3.5 % of reading or +/- 2 cm.)

6 cm 20 cm 40 cm

## Chapter 6 AVEA Software Upgrade

This document provides a brief overview of the procedure to upgrade ventilator software using the RS232 serial port of the AVEA. The HyperTerminal utility available within the Windows environment is used here as an example. Any suitable terminal emulation software would work as well.

#### Requirements

- Computer with a serial port (COM1: or COM2:)
- Terminal Emulation Software (for example, HyperTerminal works well) configured for serial connection 115Kb,8,N,1 flow control OFF (see instructions below)
- AVEA ventilator with Software Upgrade Utility Version 1.0 or higher installed.
- A Serial cable to connect the computer to the serial port of the ventilator.
   (A straight-through cable with null modem adapter or null modem cable with gender changer both work fine).
- New binary files for the ventilator: 63569X.bin (Monitor) & 63568X.bin (Control). "X" indicates the revision of the released software, e.g. "63569E" is revision E.

## Copying the Files

#### From a CD

With the CD inserted in the computer, copy the new software binary files to the computer hard drive as follows:

- 1. Double click on "My Computer".
- 2. Double click on the CD ROM Drive to open the window & display the files.
- 3. Right click on each of the files displayed in turn and select Copy, then right click on the computer desktop and select Paste.
- 4. The files should appear on the desktop.
- 5. Remove the CD ROM from the computer drive.

#### From an e-mail attachment

- 1. Right click on the e-mail attachment. From the pop-up dialog box select Save As.
- 2. Browse to your desktop and click Save.
- 3. The files should appear on the desktop.

## Connecting the AVEA

1. Connect the serial cable to the computer COM port selected for use (usually Com1 or Com2). Connect the other end to the ventilator serial port 1 shown here.

| L              |   |
|----------------|---|
|                |   |
|                |   |
|                |   |
|                | - |
| Serial port #1 |   |

Figure 6.1: Serial port

## **Opening the terminal emulation software (HyperTerminal is used here)**

- 1. From your desktop, click on the START button at the lower left of the screen.
- 2. From the pop-up menu, select Programs, then Accessories, then Communications.
- 3. When the Communications pop-up appears, click on Hyper Terminal.


Figure 6.2: Hyper Terminal

4. Double click on the HyperTerminal icon inside the HyperTerminal folder.



Figure 6.3: Hyper Terminal Options

5. The HyperTerminal window opens in the New Connection window.



Figure 6.4: New Connection

6. Type AVEA into the Name bar and click OK. The Connectivity window opens.

| AVEA - HyperTe | Connect To          | ?                                      | × N            |
|----------------|---------------------|----------------------------------------|----------------|
|                | AVEA                |                                        |                |
| -              | Enter details for   | the phone number that you want to dial | :              |
|                | Country code:       | United States of America (1)           |                |
|                | Ar <u>e</u> a code: | 909                                    |                |
|                | Phone number:       |                                        |                |
|                | Connect using:      | Direct to Com1                         | 3              |
|                |                     | OK Cancel                              |                |
| Disconnected   | ,                   | ., ., .,                               | NUM Capture // |

Figure 6.5: Connect Using

7. In the Connect Using bar, type Direct to Com1 (or Com2 if that is your computer connection). The Port Settings window opens

|                       | COM1 Properties                   | 3          |
|-----------------------|-----------------------------------|------------|
| 🕼 AVEA - Hyj          | Port Settings                     |            |
| <u>File Edit Viev</u> |                                   |            |
| Dø ø                  |                                   |            |
|                       | Bits per second: 115200           |            |
|                       |                                   |            |
|                       | Data bits: 8                      |            |
|                       |                                   |            |
|                       | Panty: None                       |            |
|                       | Stop bits: 1                      |            |
|                       |                                   |            |
|                       | Flow control: None                |            |
|                       |                                   |            |
| Disconnected          |                                   | UM Capture |
|                       | Advanced <u>H</u> estore Defaults |            |
|                       |                                   | 1          |
|                       | OK Cancel Apply                   | J          |



- 8. Enter the following values:
  - Bits per second = 115200
  - Data bits = 8
  - Parity = None
  - Stop bits = 1
  - Flow control = None
- 9. Click OK. The AVEA HyperTerminal window opens.



Figure 6.7: Connected

## Powering up the AVEA

- 1. Hold down Expiratory Hold key on the front membrane panel of the AVEA during the ventilator power-up sequence until the front panel LED's light up.
- 2. When the LED's turn off, the Upgrade Utility banner should appear in the terminal software (HypertTerminal) window. The connection is established and ready to transfer the new software.

| avea - HyperTerminal<br>File Edit View Cal Iransfer Help<br>DB @ ⑧ =D B B               |                                     |
|-----------------------------------------------------------------------------------------|-------------------------------------|
| AUcA Software Upgrade Utility Version<br>DM [Download Monitor]<br>DC [Download Control] | 1.0                                 |
| >                                                                                       |                                     |
|                                                                                         |                                     |
|                                                                                         |                                     |
| Connected 0:04:27 Auto detect 115200 B-N-1 SC                                           | ROLL CAPS NUM Capture Print echo // |

#### Figure 6.8: Using Hyper Terminal

3. Type **DC** at the command prompt and press ENTER to start the download for the Ventilator Control software.

| 🎭 avea - HyperTerminal                                    |                            |              |         |         |     |         |            | - O × |
|-----------------------------------------------------------|----------------------------|--------------|---------|---------|-----|---------|------------|-------|
| <u>File Edit View Cal Irans</u>                           | sfer <u>H</u> elp          |              |         |         |     |         |            |       |
| DB 08 DB                                                  | 16                         |              |         |         |     |         |            |       |
|                                                           |                            |              |         |         |     |         |            |       |
| AUCA Software Upg<br>DM [Download Moni<br>DC [Download Co | rade Uti<br>tor]<br>ntrol] | lity Versi   | on 1.0  |         |     |         |            |       |
| >dc<br>Start 1k Xmodem t<br>CCCCCCC_                      | ransfer i                  | fron PC to   | Control | Process | or  |         |            |       |
|                                                           |                            |              |         |         |     |         |            |       |
|                                                           |                            |              |         |         |     |         |            |       |
|                                                           |                            |              |         |         |     |         |            |       |
|                                                           |                            |              |         |         |     |         |            |       |
| Connected 0:06:02                                         | uto detect                 | 115200 8-N-1 | SCROLL  | CAPS    | NUM | Capture | Print echo |       |

Figure 6.9: Xmodem Transfer

- 4. From the **Transfer** menu, select **Send File**
- 5. Ensure the protocol is set to "**1K XMODEM**".
- 6. Click **Browse** and navigate to the desktop where you saved the binary files.

7. Select the file to transfer (63568X.bin) and click **Send.** The file will begin transferring and should be monitored on the display. A confirmation will be displayed in the terminal window when the file has successfully transferred.

| avea - Hype                                          | erTerminal<br>Cal Transfer                              |                                                                                             | <u>_0×</u> |
|------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------|------------|
| DISI 0                                               | a ob e                                                  | 8<br>000                                                                                    |            |
| AUcA Soft<br>DM [Down]<br>DC [Dow<br>>dc<br>Start 1k | ware Upgrad<br>oad Monito:<br>mload Cont:<br>Xmodem tra | Butility Version 1.0                                                                        |            |
| AUGA Soft<br>DM [Down1<br>DC [Dow                    | ware Upgra<br>oad Monito:<br>mload Cont:                | C:\Windows\Desktop\upgrade\63568X.bin [Browse]<br>Protocol:<br>IK Xmodem  Send Close Cancel |            |
| Connected 0:27:3                                     | 11 Auto de                                              | tect 115200 8-N-1 SCROLL CAPS NUM Capture Print echo                                        |            |
|                                                      |                                                         | Figure 6.10: Send File                                                                      |            |
| 1K Xmoden                                            | n file send f                                           | or avea                                                                                     |            |
| Sending                                              | C:\Windows                                              | \Desktop\upgrade\63568X.bin                                                                 |            |
| Packet:                                              | 81                                                      | Error checking: CRC                                                                         |            |
| Retries                                              | 0                                                       | Total retries: 0                                                                            |            |
| Last error.                                          | ,                                                       |                                                                                             |            |
| File:                                                |                                                         | 76k of 266K                                                                                 | _          |
| Elapsed:                                             | 00:00:14                                                | Remaining: 00:00:34 Throughput: 5558 cps                                                    | -          |
|                                                      |                                                         | Cancel gps/bps                                                                              |            |

Figure 6.11: Sending a File

| avea - HyperTermini       File     Edit       Yiew     Cal       Cal     Cal                                | al<br>ransfer <u>H</u> elp                                   |                                             |                    |       |      |         |            | _0× |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|--------------------|-------|------|---------|------------|-----|
| AVeA Software L<br>DM [Download Mc<br>DC [Download                                                          | pgrade Ut:<br>nitor]<br>Control]                             | <b>ility</b> Version                        | n 1.0              |       |      |         |            | ×   |
| >dc<br>Start 1k Xnoder<br>CCCCCCCC<br>Control Process<br>AVeA Software L<br>DM [Download Mc<br>DC [Download | o transfer<br>or Version<br>pgrade Ut:<br>nitor]<br>Control] | from PC to<br>1.9 download<br>ility Version | Control<br>verifie | Proce | ssor |         |            |     |
| >dm_                                                                                                        |                                                              |                                             |                    |       |      |         |            |     |
| Connected 0:03:41                                                                                           | Auto detect                                                  | 115200 8-N-1                                | SCROLL             | CAPS  | NUM  | Capture | Print echo |     |

#### Figure 6.12: Confirmation

- 8. Repeat the process by typing **DM** at the command prompt and pressing RETURN to start the download for the Ventilator Monitoring software.
- 9. Select the SendFile command from the Transfer menu
- 10. Ensure the protocol is set to "1K XMODEM".
- 11. Select "63569X.bin" as the file to send for the monitor program.
- 12. When the transfer is complete, power-down the ventilator and disconnect from PC.

#### Checks

When you turn the Ventilator Back "ON" the Power On Self Tests (POST) will be performed automatically as detailed in the Operator's Manual. When the MAIN screen displays, you will see the new version (version 1.9) displayed on the bottom of the Touch Screen.

Confirm active waveforms are displayed on the MAIN screen.

Complete the checklist attached to this procedure and return or fax to VIASYS Critical Care Division Regulatory Affairs Dept as follows:

Regulatory Affairs Dept. VIASYS Critical Care Division 1100 Bird Center Drive Palm Springs, CA 92262 USA Fax number: 1 760-778-7301

## Note

The User Verification Tests (i.e. The EST and Manual Alarms Checks) detailed in the operator's manual, should be performed prior to patient connection.

# Software Install Verification AVEA Ventilators

| Date:                                     | Model:              | Comprehensive | Basic 🗌 |  |
|-------------------------------------------|---------------------|---------------|---------|--|
| UIM Serial #                              | Ventilator Serial # |               |         |  |
| Prior Software Version (from MAIN screen) |                     |               |         |  |
| New Software version                      |                     |               |         |  |
|                                           |                     |               |         |  |

## Installation Verification

Monitor processor \_\_\_\_\_\* verified

\* Insert version indicated by device

## **Confirmation checks**

| Ventilator power up and POST    |       |  |
|---------------------------------|-------|--|
| New software version displayed  |       |  |
| Active waveforms on MAIN screen |       |  |
|                                 |       |  |
| Signature:                      | Date: |  |
|                                 |       |  |
| Title:                          |       |  |

SEND TO: Regulatory Affairs Dept. VIASYS Critical Care Division 1100 Bird Center Drive Palm Springs, CA 92262 USA Fax number: 1 760-778-7301

## **Chapter 7** Calibration

## Note

Prior to calibration, warm the unit for 30 minutes.

## **Transducer Calibration**

Current copies of these documents can be obtained from VIASYS Healthcare Technical Support as shown in Appendix A.

51000-40022 Gas Delivery Engine Schematic

51000-40697 Test Requirements, Gas Delivery Engine

51000-40843 Test Requirements, Pneumatic Module

## Equipment Required.

The following list of parts & tools is recommended for calibrating the AVEA.

#### Table 7.1: Parts available from VIASYS Healthcare

| Part Number | Description                          | Quantity |
|-------------|--------------------------------------|----------|
| 3001083     | Catheter assy                        | 1        |
| 51000-40094 | Adult wye flow sensor                | 2        |
| 51000-40096 | Connector, AUX port                  | 1        |
| 52000-01193 | Tube ftg, Tee 1/16 x 1/18 x 1/18 dia | 3        |
| 32040       | Tube ftg 1/8 to 1/16 dia reducer     | 2        |
| 32067       | Tube ftg, tee 1/16 x 1/16 x 1/8 dia  | 1        |
| 52000-01205 | Luer lock, male 1/16 dia             | 1        |
| 33980       | Tubing, poly 12mm OD                 | 1.50ft   |
| 52000-00133 | Ftg, DISS, air, male ¼ NPT           | 1        |
| 32002       | Ftg, fem R/A Elbow 12mm OD           | 1        |
| 52000-00132 | Ftg, Oxygen, ¼ NPT x 9/16 male       | 2        |
| 51000-09558 | Calibration syringe                  | 1        |
| 51000-08258 | O2 relay adjustment tool             | 1        |
| 54980-01903 | Silicon tubing                       | 10 ft    |

#### Parts not supplied by VIASYS Healthcare

Calibrated Pressure Manometer (model RT200 made by TimeMeter, recommended) Wall or bottled gas supply of pressurized Medical Air and Oxygen. Connector and tubing from Bicore P/N 3001042 sensor Connector and tubing for the Wye flow sensor Coupler, fem – fem ¼ NPT Ftg, ¼ male NPT to 1/8 hose barb Calibrated O2 regulator 0-50 psig Calibrated Air regulator 0-50 psig Wrench, 3/8 – 6pt deep socket (long 3/8 drive or short ¼ drive) Wrench, open ended 9/16 cross foot

## **Calibration setup**

The generic setup shown in figure 7.1 is recommended for calibrating the low pressure ports of the AVEA.





## Note

Before using any test equipment [electronic or pneumatic] for calibration procedures, the accuracy of the instruments must be verified by a testing laboratory. The laboratory master test instruments must be traceable to the NIST (National Institute of Standards Technology) or equivalent. When variances exist between the indicated and actual values, the calibration curves [provided for each instrument by the testing laboratory] must be used to establish the actual correct values. This certification procedure should be performed at least once every six months. More frequent certification may be required based on usage.

## Accessing the Calibration Screen

To access the calibration:

- 1. Hold down the Setup key during ventilator power-up
- 2. When the Service Functions screen appears (see figure 7.2), press Calibrate.
- 3. The Calibration menu screen will appear (see figure 7.3).



#### Figure 7.2 Service Functions Screen



Figure 7.3 Calibration Menu Screen

### Inspiratory Pressure Calibration

1. From the Calibration screen menu, press INSP PRES to access the inspiratory pressure transducer calibration screen. See figure 7.4



#### Figure 7.4 Inspiratory pressure transducer calibration screen

2. Disconnect the luer fitting and tube from port E4 on the gas delivery engine. See figure 7.5. and tubing diagram in appendix B.

- 3. With NOTHING attached to the port, press the Zero (0) calibration button on the touch screen.
- 4. Attach the calibration assembly shown here to port E4 on the gas delivery engine. To do this attach a length of tube with the appropriate luer fitting to the luer receptacle at E4 and connect to the calibration assembly setup using a barbed "T" fitting.
- 5. Using the calibration syringe P/N 51000-09558, slowly apply negative pressure to the port at E4. (Turn counter clockwise for negative pressure).
- Refer to the reading on the calibrated Pressure Manometer (model RT200 made by TimeMeter, recommended). When the correct reading of – 40 cmsH2O is obtained, press the corresponding calibration button on the touch screen.

Figure 7.6

- 7. For positive pressure calibration, turn the syringe handle clockwise until the reading matches the 75 cmH2O number on the touch screen then press the corresponding button.
- 8. Press EXIT to exit.
- 9. Disconnect calibration set-up from E4.
- 10. Reconnect the luer fitting and tube into port E4 on gas delivery engine.



E4

F4

## Wye Flow Sensor

- 1. From the Calibration Screen, press WYE FLOW to access the Wye Flow sensor calibration screen. See figure 7.9.
- 2. With no sensor attached, press the zero (0 cmH2O) button for a zero calibration value.



Figure 7.9 Wye flow sensor calibration screen

Blue Tubing 3. Attach the 51000-40094 sensor connector to the AVEA. Attach the blue tube only of the Wye flow sensor to the basic calibration tubing assembly using a barbed fitting. Leave the clear tube Clear Tubing unattached as shown here 4. Turn the calibration syringe slowly counter clockwise for a negative pressure of only -4cmsH2O for the negative calibration value and plus 4 cmH2O for the positive value. Press the appropriate touch screen button when each value is reached to capture and store the value. 5. Exit Wye Flow To calibration Sensor screen. syringe To manometer

Figure 7.10

## WARNING

DO NOT APPLY MORE THAN 10cmH2O TO THIS PORT. Excessive pressure will damage the AVEA. If this occurs immediately contact Technical Support for instructions.

## **Expiratory Pressure**

- 1. From the Calibration Screen, press EXP PRES to access the calibration screen. See figure 7.13.
- 2. Remove internal expiratory flow sensor.
- With no sensor attached, press the zero (0 cmH2O) button for a zero calibration value.



Figure 7.13 Expiratory Pressure calibration screen

4. Attach *both tubes* (blue & clear) of the Expiratory Sensor P/N 51000-40094 to the basic calibration tubing assembly using a barbed "T" fitting as shown here.



5. Connect the tubing assembly to the internal expiratory sensor port. See figure 7.15 for the sensor connector location.



Figure 7.15 Expiratory Sensor connector location

## CAUTION

The expiratory sensor connector has a locking sleeve. Be sure to fully retract the sleeve before attempting to attach the connector. Failure to do so could damage the connector.



Figure 7.16 Expiratory Sensor Connector

- 6. Turn the calibration syringe slowly counter clockwise for a negative pressure of -40cmsH2O to establish the negative calibration value and plus 75 cmH2O to establish the positive value. Press the appropriate touch screen button when each value is reached to capture and store the calibration.
- 7. Press EXIT to exit

## **Expiratory Flow**

- 1. Press the EXP FLOW touch screen button to access the screen, see figure 7.17.
- 2. With nothing attached to the ventilator, press the 0 cmH2O touch screen button.

| EXP FLOW                     | A/D: 2050  |
|------------------------------|------------|
| Push to 0<br>Cal: 0<br>CmH20 | 4<br>cmH20 |
| Stored: 3601                 | 1088       |
|                              | EXIT       |

Figure 7.17 Expiratory Flow Calibration Screen

- 3. Using the same sensor connector and tubing setup as the wye flow calibration, carefully attach the locking sleeved connector to the expiratory flow port as shown in figure 4.11.
- 4. Turning the calibration syringe clockwise, apply 4 cmH2O pos pressure and press the positive pressure touch screen button.

## WARNING

Apply NO MORE THAN 10 cmH2O to the port when calibrating this value. Doing so could cause damage to the AVEA. If this occurs immediately contact Technical Support for instructions.

5. Press EXIT to exit.

## O2 inlet pressure

- 1. Press O2 INLET PRES from the Calibration screen to access the O2 Inlet pressure calibration screen.
- 2. With nothing attached to the instrument, press the 0 psig touch screen button.

| 02 INLET PRESS         | A/D: 1797  |
|------------------------|------------|
| Push to 0<br>Cal: psig | 40<br>psig |
| Stored: 1800           | 2518       |
|                        | EXIT       |



- 3. Use a calibrated 0-150 psi regulator and a wall or cylinder supply of medical oxygen.
- 4. Using a "Y" adapter (see figure 7.19), attach the "Y" adapter shown here to the regulator. A



Figure 7.19 "Y" high pressure DISS 1290 adapter

5. Attach one arm of the tubing to the manometer and connect the other (with the correct DISS fitting) to the high pressure O2 inlet on the rear of the instrument shown in figure 7.20.



Figure 7.20 O2 hose connection

5. Apply 40psig (2.76 bar) of pressure & press the corresponding touch screen button to calibrate.

## Air inlet Pressure

Press the AIR INLET PRES touch screen button from the calibration screen to access the Air Inlet Pressure calibration screen as shown in figure 7.21.

With nothing connected to the air/blended gas inlet port on the rear of the ventilator, press the 0 psig touch screen button.

| AIR INLET PRES         | A/D: 1743  |
|------------------------|------------|
| Push to 0<br>Cal: psig | 40<br>psig |
| Stored: 1742           | 2476       |
|                        | EXIT       |

#### Figure 7.21 Air Inlet Calibration screen



Figure 7.22 "Y" adapter

Connect, a wall or cylinder supply of medical grade air through a calibrated 0-150 psi regulator and "Y" adapter P/N to a manometer and to the high pressure air/heliox inlet on the rear of the ventilator.



Attach the air inlet smart connector to the port on the rear of the ventilator.

#### Figure 7.23 "Smart" Connector

Attach the hose from the calibrated regulator on the medical grade air source to the smart connector port and apply 40psi pressure per the in-line manometer. When the correct reading is obtained, press the 40 psig touch screen button on the Air Inlet calibration screen.



Figure 7.24 Attaching the smart connector

## **Blended Gas Pressure**

- Press the BLENDED GAS PRES touch screen button from the Calibration screen to access the blended gas pressure calibration screen.
- 2. Cut cable tie. Remove metal hose stabilizer.
- 3. Disconnect compressor output hose.



Figure 7.25 Blended Gas Pressure Screen

4. Press 0 psig with nothing connected to the ventilator. Disconnect the input of the accumulator at port C2 where connects to the blender manifold. See figure 7.26.



Figure 7.26 Port C2 connection



5. Use adapter (see figure 7.26) to attach calibration tubing assembly #1 to the accumulator input tubing. Attach also to a calibrated 0-150psi regulator connected to the high pressure gas source & to a manometer.

#### Figure 7.27 Adapter for accumulator tubing.

6. Apply 9 psig from the regulator (connected to wall or bottled gas). When the correct reading is obtained on the manometer, press the 9 psig touch screen button.

- 7. Reconnect and reassemble compressor output hose to blender manifold. Attach metal hose stabilizer. Replace cable tie.
- 8. Press EXIT to exit.

#### O2 sensor

Press the O2 SENSOR touch screen button on the Calibration Screen menu to bring up the O2 Sensor calibration screen.

With nothing attached to the ventilator, press the 21% touch screen button.

| 02 SENSOR                  | A/D: 134      |
|----------------------------|---------------|
| Push to 21<br>Cal : 96F102 | 100<br>96F102 |
| Stored : 704               | 708           |
|                            | EXIT          |





Using a "Y" adapter, connect a wall or bottled medical oxygen supply via a calibrated 0-150 psig regulator to the calibration tubing assembly shown here. Connect to port H4 on the Gas Engine. Connect the other leg of the "Y" to a manometer





Apply 9 psig of 100% medical oxygen to port H4, wait until the manometer pressure reading stabilizes then press the 100% touch screen button

Figure 7.30

## **O2 Blender and Compressor Calibration**

Calibration of the O2 blender and the Compressor is done at the VIASYS Healthcare factory. Contact your VIASYS Healthcare Critical Care Division representative as shown in Appendix A.

## **Chapter 8 Preventative Maintenance**

## **Routine Maintenance Procedures**

The following parts are typically replaced on an annual basis:

- Air inlet filter
- Oxygen inlet filter
- Compressor inlet filter
- Compressor outlet filter
- Exhalation Diaphragm

The following service procedures will be performed at this time:

- 1. Remove and replace (items described above)
- 2. Calibrate the following pressure Transducers (9 total)
  - Air (Blended gas)
  - 02
  - Blended Gas
  - Expiratory Flow
  - Inspiratory Flow
  - Exhaled flow delta
  - Wye flow delta
  - Auxiliary
  - Esophageal
- 3. Check Compressor output.
- 4. Perform OVP (Operational Verification Procedure) and manual alarms checks.

## Replacing the O2 and Air/Heliox filters.

You can access both these gas filters from the rear panel of the ventilator. See figure 8.1 below.



To remove the O2 & Air/Heliox filter covers, you will need tool number TL-109, available from Viasys Healthcare Technical Support .





Figure 8.3 Removing the filter covers



\_\_\_\_

pull straight out from the filter port.

Figure 8.4 Removing the filter

Replace the old filters with new ones (Balston P/N 050-05) taking care to seat the filter over the filter retainer inside the port as you insert each one.



Using needle nosed pliers, grasp the filter firmly and

Figure 8.5 Replacing the filter



Align the filter retainer in the center inside the filter as you replace the cover.

Figure 8.6 replacing the filter cover

## **Replacing the Compressor Inlet & Outlet filters**



Figure 8.7 Compressor and filters

Disassemble the ventilator as shown in Chapter 4 to access the Compressor filters.

Both the inlet and the outlet filters unscrew as complete assemblies for replacement. Use only the part numbers shown above available from VIASYS Healthcare Critical Care division.

## **Replacing the Exhalation Diaphragm**

To replace the exhalation valve membrane, first remove the following:

- The UIM
- The top cover
- The exhalation filter/water trap assembly
- The exhalation assembly (corner) cover.

Once the top cover and the exhalation cover have been removed, the exhalation assembly should be accessible (see figure 8.8)



Figure 8.8 Exhalation assembly

Unplug the sensor connector from the receptacle taking care to retract the locking shroud as you do so.

Loosen the tubing form the tubing retainer.

Grasp the rubber elbow and pull firmly out towards the front of the AVEA. This will expose the flow sensor. Set the rubber elbow aside.

Gently free the flow sensor from the exhalation valve body and pull out towards the front of the AVEA. This will leave the valve body in place.

To remove the valve body, press down on the lever shown in figure 8.9, turn the valve body counter clockwise until the fins of the locking mechanism release and pull out. This will expose the membrane.



Figure 8.9 Disengage valve body



Figure 8.10 Membrane seated in the valve body.



To remove the membrane, grasp the nipple and gently pull away from the valve body.

Figure 8.11 Removing the membrane

Replace the membrane and press gently into the valve body making sure that the edges are well seated .







Figure 8.13 Insert the flow sensor

Grasp the flow sensor by the smaller diameter orifice and insert into the cuff on the valve body.

Push the rubber elbow onto the smaller end of the flow sensor taking care to align the groove on each side with the corresponding rail of the molded holder.

When the elbow is correctly installed, the molded protrusion on the top lines up with the protrusions on each side of the holder.



Figure 8.14 Align rubber elbow.

Reconnect the sensor and insert the two tubes into the tubing retainer.





Replace the exhalation assembly cover and top cover. Replace & reconnect the UIM. Run OVP tests after any part replacement.

## Chapter 9 Troubleshooting

This section describes how to troubleshoot the ventilator if:

- The ventilator does not turn on properly.
- A Vent Inop occurs when you turn on the ventilator.
- An Operational Verification Test fails.
- A malfunction occurs.

### If The Ventilator Does not Turn ON

If you turn the power switch ON and the ON indicator does not illuminate, perform the troubleshooting procedures given in Table 5.1.

| PROBLEM                                                                                | POSSIBLE CAUSE                                                                                                                                              | ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ventilator plugged into an AC<br>source but does not power up.                         | No power at AC outlet, or the AC/DC<br>select switch is in the ALT PWR<br>SOURCE position, or the AC Line<br>Voltage switch is set to the wrong<br>voltage. | Try connecting to a known good AC power<br>source. Make sure the AC/DC switch is in the<br>AC position. Make sure, the voltage setting of<br>the ventilator matches the voltage of your<br>power source. Check the fuse assembly if the<br>ventilator still does not power up, Contact<br>your Bird Products Certified Service<br>Technician. Check the DC voltage output<br>supply from transformer at J9. Check DC<br>voltage at J3. Black is ground. Red is 5 volts<br>DC and Yellow is 14.7 to 20 DC. If voltage is<br>not present, replace Power Supply PCB. |
| Ventilator attached to alternate<br>external DC power source but<br>does not power up. | If the external source is a battery, the<br>battery may not be charged, or the<br>AC/DC select switch may be in the AC<br>position.                         | Plug the ventilator into a known good AC<br>source, or to a known good battery and see if<br>it powers up. If using a 12VDC power source,<br>set the AC/DC select switch to the ALT PWR<br>SOURCE position. Check the fuse assembly.<br>If the ventilator still does not power up,<br>contact your Bird Products Certified Service<br>Technician. Check DC voltage at J3. Black is<br>ground. Red is 5 volts DC and Yellow is 14.7<br>to 20 DC. If voltage is not present, replace<br>Power Supply PCB.                                                           |

#### Table 9.1: Troubleshooting Power-Up Problems

#### If a Vent Inop alarm occurs.

Remove the ventilator from service and contact VIASYS Healthcare Technical Support.

You may be asked to check the error log. To do this, power up the ventilator with the SETUP key depressed. When the SERVICE FUNCTIONS screen appears, press ERROR LOG. The following screen appears listing all error codes chronologically with the latest occurring at the top.

| ERROI | RLOG  | EXCEPTIONS              |
|-------|-------|-------------------------|
| 07/02 | 09:20 | Compressor Rotor Locked |
| 07/02 | 09:20 | Pneumatics Module FTC   |
| 07/02 | 09:05 | Pneumatics Module FTC   |
| 07/01 | 09:50 | Compressor Output Low   |
| 07/01 | 09:50 | Compressor Rotor Locked |
| 07/01 | 09:50 | Pneumatics Module FTC   |
| 07/01 | 09:50 | Pneumatics Module FTC   |
| 07/01 | 09:33 | Bad Cal, FCV            |
| 07/01 | 09:33 | Pneumatics Module FTC   |
| 07/01 | 09:32 | Bad Cal, FCV            |
| 07/01 | 09:21 | Pneumatics Module FTC   |
| 07/01 | 09:05 | Pneumatics Module FTC   |
| 07/01 | 08:42 | Exp Temperature Error   |
| 07/01 | 08:21 | Pneumatics Module FTC   |
|       |       |                         |

#### Figure 9.1 Error log

If there is more than one page of error codes, you can scroll through them using the Data Dial. In this way, you can print a page-by page record of the codes for reference or reporting purposes.

When you have captured this information, press the Exceptions key. The EXCEPTION LOG appears.





In the event of a fatal error, in either the Control or the Monitor processor, the date, time and address will be recorded here. You can print this and/or record the information for reporting purposes.

When you have captured the Exception log information, press Exit. DO NOT press Clear at this time, you may need to refer to this information again, or the factory technician may need to do so if the unit is returned for repair.

## List of Possible Error Codes

#### Abbreviations:

FTC: Fail-to-cycle IFS: Inspiratory Flow Sensor FCV: Flow Control Valve EFS: Expiratory Flow Sensor PT: Pressure Transducer Sup: Supply BG: Blended Gas WFS: Wye Flow Sensor HWFS: Hot Wire Flow Sensor

#### Messages:

Pneumatics Module FTC HSSC Comm Fault **IFS Voltage Fault** TCA A/D Ref Fault IFS A/D Ref Fault Compressor Rotor Locked Compressor Output Low FCV Overcurrent Fault DPRAM Comm Error. Mntr DPRAM Comm Error, Ctrl Data Error, TCA Bad Cal, EFS PT Bad Cal, Insp PT Bad Cal, Exp PT Data Error, Blender Bad Cal, Blender Data Error, Air Sup PT Bad Cal, Air Sup PT Data Error, O2 Sup PT

Bad Cal, O2 Sup PT Data Error, BG PT Bad Cal, BG PT **Device Not Found, IFS** Header Error, IFS Data Error, IFS Bad ID, IFS Bad Cal, IFS Device Not Found, EFS Header Error, EFS Data Error, EFS Bad ID, EFS Bad Cal, EFS Bad Cal. FCV **Bad Model Number** Bad Cal, FiO2 Header Error, Compressor Data Error, Compressor Bad Cal, Compressor

Invalid Feature, EPM Header Error, EPM Data Error, EPM Bad Cal, WFS PT Bad Cal, Esoph PT Bad Cal, Aux PT Bad Sensor Type, HWFS Header Error, HWFS Data Error, HWFS Bad ID, HWFS Bad Cal, HWFS Header Error, WFS Data Error, WFS Bad ID, WFS Bad Cal, WFS Settings Lost Config Lost Insp Temperature Error

Exp Temperature Error Bad ID, Ctrl PCB Header Error, Ctrl PCB Bad ID, TCA Header Error, TCA Bad ID, Power PCB Header Error, Power PCB Bad ID, Blender Header Error, Blender Bad ID, Air Supply PT Header Error, Air Sup PT Bad ID, O2 Supply PT Header Error, O2 Sup PT Bad ID, BG PT Bad Header, BG PT Trend Data Lost Event Log Data Lost Compressor Runtime Data Error

#### Table 9.2: AVEA Mechanical Troubleshooting

#### ! Check error log (and exceptions) with any "Device Error" message on screen

#### ! Remove ventilator from patient with any potential problem

#### 1. Battery/Power Supply

- \* Insure unit is plugged in between patient use.
- \* Refer to service manual for proper battery discharge/charging procedures.
- \* Check all cables/connections and voltages before replacing parts..

| Symptom                                                 | Problem                                                                                                                                                                        | Solution(s)                                                                                                                                                                                                                    |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit will not power up                                  | Blown/incorrect/missing A/C<br>fuse(s)<br>Loose Internal Connection(s)<br>Bad Power Switch<br>Bad Power supply<br>Bad Power Driver PCB<br>UIM problem                          | Check/replace A/C fuses<br>Check all connections from wall A/C through<br>Power Supply Replace Power<br>Switch<br>Replace Power supply<br>Replace Power Driver PCB (GDE)<br>Check UIM cable. Refer to "UIM/Control"<br>section |
| No battery indication<br>(LED)                          | Excessively discharged battery<br>state<br>Blown/Missing batt fuse<br>Loose connections<br>Bad Battery PCB<br>Bad LED indicator panel<br>Bad battery<br>Transition Board fault | Charge properly-refer to service manual<br>Check/replace fuse<br>Check connections<br>Replace Battery PCB<br>Replace LED indicator panel<br>Check/replace battery<br>Replace Transition Board                                  |
| Will not charge past<br>yellow                          | Excessively discharged battery<br>state<br>Loose connections<br>Bad Battery PCB<br>Bad battery<br>Bad Power Driver PCB                                                         | Charge properly-refer to service manual<br>Check connections<br>Replace Battery PCB<br>Check/replace battery<br>Replace Power Driver PCB (GDE)                                                                                 |
| Decreased run time on<br>battery<br>(internal/external) | Excessively discharged battery<br>state<br>Loose connections<br>Bad Battery PCB<br>Bad battery<br>Bad Power Driver PCB                                                         | Charge properly-refer to service manual<br>Check connections<br>Replace Battery PCB<br>Check/replace battery<br>Replace Power Driver PCB (GDE)                                                                                 |
| Unit wont run on battery<br>(internal/external)         | Blown/missing battery fuse<br>Loose connections<br>Bad battery<br>Bad Power PCB                                                                                                | Check/replace fuse<br>Check connections<br>Check/replace battery<br>Replace Power PCB (GDE)                                                                                                                                    |

| Symptom                                                    | Problem                                                                                                        | Solution(s)                                                                                                            |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Unit does not run on<br>A/C                                | Wiring disconnect<br>Defective Power Entry Module<br>Power supply is not recognizing<br>A/C                    | Check all connections-especially by compressor<br>Replace Power Entry Module<br>Replace Power supply                   |
| Excessive battery heat<br>(internal only)                  | Battery PCB improperly wired<br>Bad battery PCB<br>Bad thermal fuse<br>Bad battery                             | Check wiring<br>Replace Battery PCB<br>Check/replace battery<br>Check/replace battery                                  |
| Flickering LED                                             | Excessively discharged battery<br>state Loose<br>connections<br>Bad power driver PCB<br>Transition Board fault | Allow to charge-should self-resolve<br>Check connections<br>Replace power driver PCB (GDE)<br>Replace Transition board |
| Alarms when Unit is<br>"off"                               | Excessively discharged battery<br>State Bad LED<br>indicator panel                                             | Allow to charge<br>Replace LED indicator panel                                                                         |
| LED red to green - no<br>yellow (external battery<br>only) | Can occur normally with ext<br>battery charge                                                                  | Perform discharge/recharge cycle                                                                                       |

#### 2. Compressor

#### ! All symptoms below assume NO wall air in use

\* Compressor/Board must be replaced together on older units

\* Check all cables and connector before replacing parts.

| No compressor function<br>(and no indicator) | Standard unit - without<br>compressor<br>Bad Air Calibration<br>Bad Blended Gas Calibration<br>Blown fuse on compressor PCB<br>Bad compressor PCB | Option on AVEA 200<br>Check Air Calibration<br>Check Blended gas Calibration<br>Replace compressor PCB<br>Replace compressor PCB |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| No compressor function (indicator present)   | Unit is reading air pressure with none present.                                                                                                   | Blown Air Pressure Transducer. See<br>Pneumatic troubleshooting                                                                  |
| "Loss of gas" alarms<br>without O2 in use    | Low compressor output<br>Compressor leak<br>Accumulator depletion                                                                                 | Check output - replace compressor if necessary<br>Check tubing/connections<br>Check for excessive patient minute ventilation     |
| "Loss of air" alarms with<br>O2 in use       | Low compressor output<br>Compressor leak<br>Accumulator depletion                                                                                 | Check output - replace compressor if necessary<br>Check tubing/connections<br>Check for excessive patient minute ventilation     |
| Excessive compressor noise/vibration         | Incorrect mounting<br>Defective/worn Vibration<br>dampeners                                                                                       | Insure mounting nuts are present and tightened Replace Vibration dampeners                                                       |
| Λ. | Tuesda | l          |
|----|--------|------------|
| ч. | Iroun  | lesnooting |
| •• | 11000  | concounty  |

| Symptom Problem Solution(s) | Symptom | Problem | Solution(s) |
|-----------------------------|---------|---------|-------------|
|-----------------------------|---------|---------|-------------|

#### 3. EPM

#### ! All symptoms below apply to WFS, Esoph and Aux - unless otherwise noted.

\* Available in AVEA Comprehensive only

\* Paux and Pesoph not

available in software

ver 2.7

| Erroneous readings<br>from sensor       | Bad Sensor<br>Transducer(s) out of calibration<br>Leak                                       | Change/Replace sensor<br>Recalibrate<br>Check all internal/external connections                                                         |
|-----------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| No reading from sensor                  | Bad sensor (cable/connector)<br>Specified transducer out of cal<br>No communication from EPM | Try different sensor<br>Check error log for specific transducer.<br>Recalibrate<br>Check internal connections. Replace EPM if<br>needed |
| "Device Error" when<br>sensor connected | Bad sensor (cable/connector)<br>Specified transducer out of cal<br>No communication from EPM | Try different sensor<br>Check error log for specific transducer<br>Recalibrate<br>Check internal connections. Replace EPM if<br>needed  |

#### 4. Exhalation Valve/Assembly

| Low measured exhaled volumes       | Internal leak<br>External leak                                         | Re-seat GDE<br>Check all circuit connections<br>Check filter assembly<br>Check/Replace exhalation diaphragm |
|------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Will not pass EST "leak<br>test"   | Internal leak<br>External leak                                         | Re-seat GDE<br>Check all circuit connections<br>Check filter assembly<br>Check/Replace exhalation diaphragm |
| Valve noise                        | Diaphragm is out of position                                           | Clean/re-seat diaphragm                                                                                     |
| Excessive expiratory<br>resistance | Moisture in Exhalation Filter<br>Clogged/Dirty Exhalation<br>diaphragm | Bypass filter and recheck. Replace if necessary<br>Clean/replace diaphragm                                  |
| Abnormal expiratory<br>waveforms   | Bad expiratory valve                                                   | Replace valve                                                                                               |

#### 5. Flow Sensors (inc. Wye)

|                                                                | <b>, , , , , , , , , ,</b>                                                                                  |                                                                    |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| * See TCA/PCB<br>troubleshooting for<br>additional information |                                                                                                             |                                                                    |
| Volumes become<br>inaccurate over time                         | Foreign material on flow sensor<br>Expiratory or Wye flow out of<br>calibration-depending on<br>sensor used | Clean/replace sensor as needed<br>Re-calibrate and recheck volumes |

| Symptom                                                                   | Problem                                                                                                                               | Solution(s)                                                                                                                                                                                                                                                                                                                |  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No reading from<br>external variable orifice<br>sensor                    | Sensor not active in certain<br>modes Loose<br>External connection/Bad<br>Sensor Loose<br>internal connection<br>Communications error | See operators manual for correct sensor/mode<br>configurations<br>Check external connection/replace sensor<br>Check all cables/connections<br>See "EPM" troubleshooting section                                                                                                                                            |  |
| No reading from<br>internal variable orifice<br>sensor                    | Loose External connection/Bad<br>Sensor<br>Loose internal connection<br>Communications error                                          | Check external connection/replace sensor<br>Check all cables/connections<br>Replace TCA/PCB (GDE)                                                                                                                                                                                                                          |  |
| No reading from<br>external heated wire<br>sensor                         | Sensor not active in certain<br>modes Loose<br>External connection/Bad<br>Sensor Loose<br>internal connection<br>Communications error | See operators manual for correct sensor/mode<br>configurations Check<br>external connection/replace sensor<br>Check all cables/connections<br>Replace TCA/PCB (GDE)                                                                                                                                                        |  |
| Volume reading above baseline on test lung                                | Normal condition. Unit expects gas at BTPS, not ATPD                                                                                  | N/A                                                                                                                                                                                                                                                                                                                        |  |
| Volume reading<br>above/below baseline<br>on patient (internal<br>sensor) | Humidifier "Active on/off" set<br>incorrectly<br>Bad Flow sensor<br>Expiratory flow out of calibration<br>Bad pressure transducer     | "Active on" for humidifier, "Active off" for HME<br>Check for correct zero with Wye sensor. If Wye<br>sensor zeros correctly, recalibrate Expiratory<br>flow and recheck. Replace internal sensor if<br>needed. If Internal/external sensors both zero<br>incorrect after recal, bad pressure transducer-<br>replace (GDE) |  |

| 6. Nebulization<br>System          |                                                                                                                                                 |                                                                                                                                                                          |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nebulizer output absent            | Unit running on compressor or<br>flow < 15 L/min<br>Bad Nebulizer Solenoid<br>Transition PCB- bad harness<br>connection<br>Problem on Power PCB | Connect wall air, increase flow (if applicable)<br>Replace Solenoid<br>Replace Transition PCB (if solenoid doesn't fix)*<br>Replace Power PCB (if solenoid doesn't fix)* |
| Nebulizer output<br>reduced/absent | Neb booster output low<br>Kinked tubing externally<br>Kinked tubing internally<br>Bad Neb Booster Solenoid                                      | Adjust Neb booster output<br>Check/replace tubing to nebulizer<br>Check unit for kinks or disconnects<br>Replace Solenoid                                                |

\* Check Voltage at Solenoid (both). Should be 12v/0v while running with cycling heard. If voltage problem is seen - suspect problem at areas.

with "\*"

#### 7. O2 Sensor

| "***" on Fi02 monitor | Fi02 reading out of upper or lower range                                           | Recalibrate/replace sensor                                                             |
|-----------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| O2 reading inaccurate | Fi02 sensor out of calibration<br>Blocked sensor orifice<br>Malfunctioning Blender | Recalibrate/replace sensor<br>Insure patentcy of orifice<br>Replace Blender Assy (GDE) |

| Symptom          | Problem             | Solution(s)             |
|------------------|---------------------|-------------------------|
|                  | Assembly.           |                         |
|                  |                     |                         |
|                  |                     |                         |
| O2 will not read | Bad 02 sensor       | Replace sensor          |
|                  | Bad 02 sensor cable | Replace sensor cable    |
|                  | TCA board problem   | Replace TCA board (GDE) |

#### 8. Pneumatic System

! Check error log (and exceptions) with any "Device Error" or "Inop" condition to diagnose component.

| Component          | Symptom                                | Problem                                                               | Solution(s)                                                                                  |
|--------------------|----------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Air Pressure PCB   | Vent Inop.<br>(communications failure) | Bad connections/cable<br>EPROM failure<br>Incorrect calibration       | Check connections/replace<br>cable Replace<br>Air PCB-recalibrate<br>Recalibrate             |
|                    | Incorrect pressure<br>reading          | Bad Transducer<br>Incorrect calibration                               | Replace Air PCB-recalibrate<br>Recalibrate                                                   |
| 02 Pressure PCB    | Vent Inop.<br>(communications failure) | Bad connections/cable<br>EPROM failure<br>Incorrect calibration       | Check connections/replace<br>cable Replace<br>02 PCB-recalibrate<br>Recalibrate              |
|                    | Incorrect pressure<br>reading          | Bad Transducer<br>Incorrect calibration                               | Replace 02 PCB<br>Recalibrate                                                                |
| Blended Gas PCB    | Vent Inop.<br>(communications failure) | Bad connections/cable<br>EPROM failure<br>Incorrect calibration       | Check connections/replace<br>cable Replace<br>Blended Gas PCB-<br>recalibrate<br>Recalibrate |
|                    | Incorrect pressure reading             | Bad Transducer<br>Incorrect calibration                               | Replace Blended Gas PCB-<br>recalibrate<br>Recalibrate                                       |
| Blender            | Vent Inop.                             | Bad connections/cable<br>EPROM failure<br>Incorrect calibration       | Check connections/replace<br>cable Replace<br>Blender (GDE)<br>Recalibrate                   |
|                    | Fi02 Inaccuracy                        | Blender Assembly Failure<br>Regulator Relay out of<br>balance<br>Leak | Replace Blender (GDE)<br>Recalibrate Regulator Relay<br>Check all pneumatic<br>connections   |
| Flow Control Valve | Inspiratory Noise                      | FCV out of<br>characterization<br>Defective FCV                       | Re-characterize FCV *<br>Replace FCV (GDE)                                                   |

| Component               | Symptom                                           | Problem                                                                                      | Solution(s)                                                                |
|-------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                         | Flow Abnormalities                                | FCV out of<br>characterization<br>Defective FCV                                              | Re-characterize FCV *<br>Replace FCV (GDE)                                 |
| Inspiratory Flow Sensor | Autocycling                                       | Leak at FCV/IFS<br>Bad IFS                                                                   | Check all connections<br>Replace IFS (GDE)                                 |
|                         | Incorrect delivery                                | Leak at FCV/IFS<br>Bad IFS                                                                   | Check all connections<br>Replace IFS (GDE)                                 |
|                         | Vent Inop                                         | Bad Connection/cable<br>Bad IFS                                                              | Check all<br>connections/replace cable<br>Replace IFS (GDE)                |
| Safety Relief Valve     | Breath delivered-no<br>output to patient          | Leak in safety solenoid<br>tubing/connections<br>Bad safety solenoid<br>Problem in TCA board | Check all connections<br>"<br>Replace safety solenoid<br>Replace TCA (GDE) |
|                         | Mechanical<br>overpressure release<br>prematurely | Incorrect Setting                                                                            | Reset overpressure setting *<br>(replace)                                  |

All items marked with an "\*" are done at factory.

#### 9. UIM/Control System

| Symptom                                        | Problem                                                                                                                                   | Solution(s)                                                                                                                                              |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit continues to run after being switched off | Disconnected wire on<br>"on/off" switch<br>Bad "on/off" switch                                                                            | Check wiring in GDE<br>Replace switch                                                                                                                    |
| No power to unit and<br>UIM                    | Fuse/power supply<br>problem                                                                                                              | See "Battery/Power supply section"                                                                                                                       |
| Unit powers on-UIM<br>doesn't                  | Damaged/disconnected<br>cable-Ext./Int.<br>Bad Backlight Inverter<br>Blown fuse on TCA<br>Bad TCA<br>Power supply voltage<br>drops w/load | Check/replace all external and internal<br>cables/connections Replace<br>Backlight Inverter<br>Replace fuse<br>Replace TCA (GDE)<br>Replace Power Supply |
| Membrane buttons not<br>working                | "Screen lock" button<br>active<br>Loose connections/bad<br>cable<br>Defective membrane<br>switch assembly                                 | Unlock screen<br>Check all cables/connections<br>Replace switch assembly (UIM)                                                                           |

| Symptom                              | Problem                                                      | Solution(s)                                                           |
|--------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|
| Touch screen not<br>working          | Loose internal<br>connection<br>Defective touch pad          | Check all internal cables/connections<br>Replace touch pad (UIM)      |
| No priority LED's                    | Bad LED PCB                                                  | Replace LED PCB                                                       |
| Optical Encoder (knob)<br>inoperable | Bad Optical Encoder                                          | Replace Optical Encoder                                               |
| No sound with alarms                 | Speaker wire<br>loose/disconnected<br>Bad speaker<br>Bad TCA | Check wiring to speaker<br>Replace speaker<br>Replace TCA board (GDE) |

# **Chapter 10 Parts Lists**

# Note

The list of components given in this manual are for reference only. For a comprehensive part list contact VIASYS Healthcare Critical Care technical support at the number given in Appendix A. Common hardware is not shown in these list.

#### Table 10.1 User Interface Module list of major components.

| Part Number | Description                                              |
|-------------|----------------------------------------------------------|
| 51000-40244 | BEZEL FRONT                                              |
| 62470       | LCD MODULE 12.1 IN LQ121 SDG11                           |
| 66088       | LCD, ACTIVE, 12.1 IN, LB121S1-A2                         |
| 51000-40193 | OVERLAY                                                  |
| 51-40499-01 | MTG PLATE UIM, DETAIL ASSY(LQ121S1DG11 SHARP)            |
| 51-40499-02 | MTG PLATE UIM, DETAIL ASSY (LB121S1 LG LCD, INC.)        |
| 51000-40300 | PCB ASSY CONTROL                                         |
| 51000-40594 | COVER, ELECT CONNECTOR DETAIL ASSY                       |
| 51000-40498 | SUPPORT BOX,UIM,DETAIL ASSY                              |
| 51000-40500 | SHEILD,SUPPORT BOX-UIM                                   |
| 51000-40072 | ARM ASSY,MOUNTING,UIM                                    |
| 51000-40595 | BEZEL, BACK - UIM                                        |
| 51000-40593 | STRAIN RELIEF, ELECT. BOX, TOP                           |
| 51000-40592 | STRAIN RELIEF ELEC BOX BOT DET ASSY                      |
| 51000-40633 | BOOT RUBBER-UIM ARM                                      |
| 51000-40622 | COVER ARM - UIM                                          |
| 51000-40623 | COVER INSIDE ARM UIM                                     |
| 51000-40650 | PCB ASSY, LED                                            |
| 71681       | CABLE, LCD                                               |
| 51000-40681 | CABLE ASSY, CONTROL PCB TO LED PCB                       |
| 51000-40687 | CABLE ASSY, CTL PCB TO BACKLT PCB                        |
| 51000-40764 | MOUNTING BLOCK, HEAT PIPE-UIM                            |
| 51000-40765 | MOUNTING BLOCK, TOP, HEAT PIPE-UIM                       |
| 51000-40766 | HEAT PIPE - UIM                                          |
| 51000-40767 | RETAINER, HEAT PIPE-CONTROL PCB                          |
| 51000-40768 | RETAINER TOP, HEAT PIPE-CONTROL PCB                      |
| 66089       | TOUCH SCREEN 12"                                         |
| 68276       | INVERTER, DC TO AC, 2 TUBE                               |
| 68267       | INVERTER, DC TO AC, L2357                                |
| 33958       | TAPE DBL SIDED .25W X .2T W/468 ADHESIVE & RELEASE LINER |
| 90939       | MAG, AVEA, USER INTERFACE MODULE ASSY                    |
| 33950       | GASKET, CHANNEL, EMI                                     |
| 51000-40852 | SHIELD, LCD SCREEN, UIM                                  |
| 51000-40839 | WIRING DIAGRAM SYSTEM AVEA                               |
| 52000-01141 | GROMMET, CATERPILLAR                                     |
| S1034       | TAPE, GLASS CLOTH-ELEC                                   |
| 51000-08819 | LABEL, ATTENTION                                         |
| 51000-40844 | SHIELD, LCD - UIM                                        |
| 1009127     | TAPE, FOAM, ADHESIVE BACK (3/16THK 3/8W)                 |

9101022THREADLOCKER, LOCTITE 2221000-40771HEAT SINK PAD CPU UIM





L1524 Revision B

Copyright © July 2003 VIASYS Healthcare

10: Parts List

**AVEA Ventilator Systems** 



L1524 Revision B

Copyright © July 2003 VIASYS Healthcare

155

| Table 10.2 | Gas Delivery Eng | ine Parts List.                          |
|------------|------------------|------------------------------------------|
|            | Part Number      | Description                              |
|            | 51000-40099      | INLET ASSEMBLY, GAS DELIVERY ENGINE      |
|            | 50570            | PCBA, PATIENT ASSIST CALL                |
|            | 51000-40849      | TRAN COM ALARM ASSY                      |
|            | 51000-40469      | BRACKET,TCA PCB,REAR                     |
|            | 71665            | FUSE, HOLDER, 5X20MM PNL MNT             |
|            | 51000-40831      | HARNESS ASSY, EXT BATT TO PWR DRVR       |
|            | 68274            | SWITCH,ROCKER,SPDT,10 AMP                |
|            | 51000-40037      | O2 BLENDER ASSY                          |
|            | 51000-40043      | FLOW SENSOR ASSY                         |
|            | 51000-40044      | PATIENT OUTLET ASSY                      |
|            | 51000-40729      | BRACKET, TCA PCB FRONT, DETAIL ASSY      |
|            | 51000-40504      | VALVE ASSY,FLOW CONTROL                  |
|            | 51000-40320      | PCBA, POWER DRIVER BOARD                 |
|            | 51000-40835      | PCB ASSY, HOUR METER, W/HARNESS          |
|            | 51000-40632      | CABLE ASSY, U2 SENSUR                    |
|            | 51000-40833      | HARNESS ASSY, GAS ID, INTERNAL           |
|            | 52000-00526      | FIG BULKHEAD MIG FEMALE LUER X 1/10 TUBN |
|            | 7 1000           |                                          |
|            | 52000-01205      |                                          |
|            | 44029            | NUT LUED VELLOW                          |
|            | 44030            | NUT LUER ORANGE                          |
|            | 68289            | SENSOR OXYGEN W/CONNECTOR                |
|            | 32008            | EITTING 12MM OD TUBE UNION EI BOW KO2I   |
|            | 32009            | FITTING 1/8" OD TUBE UNION TEE KO2T      |
|            | 32006            | FITTING 1/4" OD TUBE UNION ELBOW KO2L    |
|            | 53021-01018      | O-RING 3/4 ID X 1/16 THK SIL RBR 7       |
|            | 53021-01011      | O-RING. 5/16 ID X 1/16 THK SIL RBR 70 SH |
|            | 33960            | BUSHING, STRAIN REL, ROUND CABLE         |
|            | 51000-40759      | CABLE ASSY, O2 SENSOR, MULTI-CELL        |
|            | 51000-40411      | FITTING,AIR INLET                        |
|            | 40523            | SCREW,6-32 X .375, BH CAP CRES           |
|            | 33965            | STANDOFF,6-32 X 1.38,M/F,HEX             |
|            | 51000-40772      | CABLE ASSY, TCA TO NURSE CALL            |
|            | 51000-40786      | CABLE ASSEMBLY, PDB TO TCA               |
|            | 71656            | CABLE,FLAT/FLX,30-COND,1.25MM            |
|            | 71657            | CABLE,FLAT/FLX,12-COND,3",1.00           |
|            | 71658            | CABLE,FLAT/FLX,26-COND,4",1.00           |
|            | 32057            | ORIFICE,METAL,1/16" TUBING               |
|            | 51000-40816      | HEAT SINK PAD POWER DRIVER PCB           |
|            | 23031            | FITTING, BULKHEAD UNION 1/80D TUBE       |
|            | 32063            | PLUG, 1/8 OD TUBE FITTING                |
|            | 33982            |                                          |
|            | 33994            | TUBING, 1/8 OD, POLYUKETHANE, BLUE       |
|            | 51000-40841      |                                          |
|            | 51000-40831      | HARNESS ASST, EXTBATTIO PWR DRVR         |

10: Parts List

**AVEA Ventilator Systems** 

157



Service Manual

Figure 4.18: Gas Delivery Engine



L1524 Revision B

Service Manual

158

**AVEA Ventilator Systems** 

10:Parts List

Figure 4.27: EPM Assembly

Copyright © July 2003 VIASYS Healthcare

L1524 Revision B

Service Manual

# **Top Assembly Parts List**

#### Table 10.3Top Level Parts List

| Part Number | Description                                  |
|-------------|----------------------------------------------|
| 51000-40008 | PNEUMATIC MOD, ASY, AVEA, GENERIC            |
| 51000-40084 | PANEL ASSY, INTERFACE/STATUS, COMPR          |
| 51000-09750 | COMPRESSOR ASSEMBLY,SCROLL                   |
| 51000-40848 | EPM ASSY                                     |
| 52000-00308 | NUT, KEPS 8-32                               |
| 40513       | SCREW, PAN HEAD CR, 8-32X0.375, STEEL W/ZINC |
| 90962       | MAG,AVEA,CPRSR. PNEU.MOD                     |
| 51000-40614 | BRACKET, CABLE RETAINER, PNEU MODULE         |
| 51000-40839 | WIRING DIAGRAM SYSTEM AVEA                   |
| 51000-40841 | TUBING DIAGRAM,AVEA                          |
| 51000-40635 | FRONT PANEL - PNEUMATIC MODULE               |
| 51000-40226 | COVER,TOP                                    |
| 51000-40634 | TOP COVER ASSY, PNEUMATIC MODULE             |
| 90976       | DRS, AVEA, PNEU MDL CPRSR                    |
| S1034       | TAPE, GLASS CLOTH-ELEC                       |
| 51000-40506 | CHASSIS, DETAIL ASSY-PNEU MODULE ENGINE      |
| 51000-40748 | ACCUMULATOR ASSY, RIGID                      |
| 51000-40547 | FITTING, PATIENT                             |
| 51000-40619 | PLATE, PATIENT OUTLET MOUNTING               |
| 51000-40635 | FRONT PANEL - PNEUMATIC MODULE               |
| 51000-40211 | RAIL, HANDLE, PNEUMATIC MODULE               |
| 51000-40210 | RAIL HANDLE SUPPORT-PNEU MODULE              |
| 51000-40214 | HANDLE, REAR, PNEUMATIC MODULE               |
| 51000-40215 | COVER, HANDLE- PNEUMATIC MODULE              |
| 51000-40615 | BRACKET, SPEAKER PNEUMATIC MODULE            |
| 51000-40612 | SHIELD-COVER, EXHALATION CONN                |
| 51000-40611 | SHIELD, EXHALATION CONNECTOR                 |
| 51000-40231 | COVER,BOTTOM                                 |
| 51000-40229 | PANEL,REAR,DETAIL ASSY                       |
| 51000-40076 | EXHALATION ASSEMBLY                          |
| 68273       | POWER SUPPLY, 31V, 8AMP                      |
| 51000-40523 | BRACKET, POWER SUPPLY                        |
| 68291       | BATTERY ASSY, 12V, 4.5AH, NIMH               |
| 51000-40223 | BRACKET,BATTERY                              |
| 51000-40573 | BRACKET ASSY, DRIVER TRANSITION PCB          |
| 51000-40618 | BRACKET, TRANSTION DRIVER MOUNT- PNEU        |
|             | MODULE                                       |
| 51000-40660 | MANIFOLD, PATIENT OUTLET                     |
| 33915       | FILTER, GUARD ASSY, COOLING FAN              |
| 51000-40022 | GAS DELIVERY ENGINE ASSY                     |
| 51000-40802 | HOUSING,CORNER,DETAIL ASSY                   |
| 52000-00311 | NUT KEPS 1/4-20 X 15/64 TH                   |
| 52000-00308 | NUT, KEPS 8-32                               |
| 51000-40763 | HOLDER, PATIENT FITTING                      |
| 51000-40770 | BRACKET,LOCKING,GDE                          |

| 51000-40749 | FAN, INTAKE ASSEMBLY              |
|-------------|-----------------------------------|
| 51000-40861 | FAN ASSY, W/WELDNUTS              |
| 33941       | VENT, FAN, SHIELDED               |
| 51000-40728 | BRACKET,AC                        |
| 51000-40678 | LATCH EXHALATION                  |
| 51000-40730 | LATCH,STOP,DETAIL ASSY            |
| 51000-40804 | BOLT, SHOULDER, EXHALATION ASSY   |
| 51000-40762 | HOLDER,WATER TRAY                 |
| 51000-40726 | TRAY, EXHALATION                  |
| 51000-40745 | JACKET, HANDLE, LEFT              |
| 51000-40746 | JACKET, HANDLE, RIGHT             |
| 51000-40779 | CABLE ASSY, TCA TO VARFLEX        |
| 51000-40782 | CABLE ASSY, EPM TO PDT            |
| 51000-40818 | SPEAKER ASSY                      |
| 15891       | FAN, ASSEMBLY, 12VDC, 550MA       |
| 51000-40827 | POWER ENTRY MODULE ASSY, AVEA     |
| 51000-40829 | DRIVER TRANSITION PCB, W/HARNESS  |
| 51000-40839 | WIRING DIAGRAM SYSTEM AVEA        |
| 51000-40841 | TUBING DIAGRAM,AVEA               |
| 51000-40026 | NEBULIZER ASSEMBLY                |
| 68259       | SPEAKER, 250-8.0KHZ, 6W 8 OHM     |
| 51000-40827 | POWER ENTRY MODULE ASSY, AVEA     |
| 51000-40862 | SHIELD, POWER SUPPLY              |
| 51000-40550 | PCBA, DRIVER TRANSITION           |
| 9456        | PLUG, GROUND REAR PNL             |
| 53013-69602 | WASHER NYL                        |
| 68159       | FUSEHOLDER, 5X20 .250 TA          |
| 71660       | FUSE,1.25A,SLO-BLO,5X20MM         |
| 3519        | TERM, FEM, 250 18-22 DBL CRIMP    |
| 68294       | SWITCH, SNAP ACTION, ROLLED LEVER |
| S1034       | TAPE, GLASS CLOTH-ELEC            |

# Appendix A Contact & Ordering Information

# How to Call for Service

To get help on performing any of the preventive maintenance routines, or to request service on your ventilator, contact VIASYS Healthcare Customer Care:

#### **Technical Service**

 Hours:
 7:00 AM to 3:30 PM (PST) Monday through Friday

 Phone:
 (760) 778-7200

 Fax:
 (760) 778-7377

#### VIASYS Healthcare Customer Care Helpline

| Hours:         | 24 hours, seven days a week                        |
|----------------|----------------------------------------------------|
| Phone:<br>Fax: | (800) 934-2473 (From within the US) (760) 778-7377 |

VIASYS Healthcare Critical Care 1100 Bird Center Drive Palm Springs, CA 92262-8099 U.S.A. Phone: (760) 778-7200 (800) 328-4139 Fax: (760) 778-7274

# **Ordering Parts**

To obtain AVEA Ventilator parts contact customer service at:

#### VIASYS Healthcare Customer Service:

| Hours: | 7:00 Am to 3:30 PM (PST) |
|--------|--------------------------|
|        | Monday through Friday    |
| Phone: | (800) 328-4139           |
|        | (760) 778-7200           |
| Fax:   | (760) 778-7274           |
|        |                          |

# **Appendix B Diagrams and Schematics**

The drawings and schematics presented in this manual are for reference purposes only. It is possible that later versions of these documents may become available after this manual print date. VIASYS Healthcare will provide upon request and to qualified persons any and all diagrams, technical drawings and other information necessary to repair, maintain or service the AVEA Ventilator systems. Contact VIASYS Healthcare Technical Support or your local VIASYS Healthcare representative for information.

### Pneumatic Schematic, Part Number 51000-09742

Pneumatic Schematic Page 1 Pneumatic Schematic Page 2 Pneumatic Schematic Page 3 Pneumatic SchematiccPage 4

### Tubing Diagram, Part Number 51000-40841

### Wiring Diagram, Part Number 51000-40839

Wiring Dagram Page 1 Wiring Diagram Page 2



L1524 Revision B





L1524 Revision B

| B: Diagrams & Schematics A/                                                                                                                                      | /EA Ventilator Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INSPIRATORY FLOW<br>DELTA P - AZ BLOCK                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TYPICAL DELTA P-AZ BLOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Differential<br>Pressure<br>Transducer<br>Tansducer<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                        | Differentia<br>ereco<br>L Pressure<br>Transduc<br>Transduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51000-09742-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| COMMUNICATION BETWEEN BLOCKS                                                                                                                                     | TRANSDUCER SIGNALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONTROL SIGNALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1       OVERBOARD EXHAUST.         2       ACCUMULATOR FLUSH/WATER DUMP EXHAUST         3       BLENDED GAS FROM GDE.         4       BLENDED GAS FROM SAFETY SV | <ol> <li>AIR XDUCER</li> <li>OXYGEN XDUCER</li> <li>COXYGEN XDUCER</li> <li>EXP FLOW DIF. XDUCER</li> <li>EXP. XDUCER</li> <li>INSP. TEMP. SENSOR</li> <li>EXP SYSTEM TEMP. SENSOR</li> <li>OXYGEN SENSOR</li> <li>INSP XDUCER</li> <li>INSP XDUCER</li> <li>INSP XDUCER</li> <li>INSP RUDCER</li> <li< td=""><td><ol> <li>INSP AZ SV</li> <li>ACTIVE EXHALATION VALVE</li> <li>20. ACTIVE EXHALATION VALVE</li> <li>21. EFS AZ SV</li> <li>22. SAFETY SV</li> <li>23. WATER DUMP SV</li> <li>24. BLENDER STEPPER MOTOR</li> <li>25. CROSSOVER SV</li> <li>26. OXYGEN SWITCH SV</li> <li>27. GAS CV</li> <li>28. HEATER</li> <li>29. FAN MOTOR</li> <li>30. COMPRESSOR MOTOR</li> <li>31. FAW AZ SV</li> <li>33. BOOSTER DRIVE SV</li> <li>33. BOOSTER DRIVE SV</li> <li>33. BOOSTER DRIVE SV</li> <li>33. BOOSTER DRIVE SV</li> <li>34. VACUUM PUMP SV</li> <li>35. ESOP FILL SV</li> <li>36. ESOP EVACUATION SV</li> <li>37. PROX PURGE SV</li> <li>38. EFS PURGE SV</li> <li>39. WFS PURGE SV</li> <li>30. CLAM SV</li> <li>41. 4 LPM SV</li> <li>43. NEONATOL SENSOR HEATER</li> </ol></td><td>AZ - AUTO ZERO.<br/>CV - CONTROL VALVE.<br/>DIF XDUCER - DIFFERENTIAL PRESSURE TRANSDUCER.<br/>EFS - EXHALED FLOW SENSOR<br/>EPM - ENHANCED PATIENT MONITORS<br/>ESOP - ESOPHAGEAL.<br/>EXH - ENHANCED PATIENT MONITORS<br/>ESOP - ESOPHAGEAL.<br/>EXH - ENHANCED PATIENT MONITORS<br/>ESOP - ESOPHAGEAL.<br/>EXH - AIRWAY FLOW<br/>GDE - GAS DELIVERY ENGINE.<br/>HP - HIGH PRESSURE.<br/>HP - HIGH PRESSURE.<br/>ID - IDENTIFIER.<br/>ID - IDENTIFIER.<br/>IP - HUCH PRESSURE.<br/>PROX - PROXIMAL (AIRWAY) PRESSURE.<br/>PROX - PROXIMAL (AIRWAY) PRESSURE.<br/>PROX - PROXIMAL<br/>PRE - SOPHAGEAL PRESSURE.<br/>PROX - PROXIMAL<br/>PRE - SOPHAGEAL PRESSURE.<br/>PROX - PROXIMAL<br/>PRESSURE.<br/>PROX - PROXIMAL (AIRWAY) PRESSURE.<br/>PROX - PROXIMAL<br/>PRESSURE.<br/>PROX - PROXIMAL (AIRWAY) PRESSURE.<br/>PROX - PROX -</td></li<></ol> | <ol> <li>INSP AZ SV</li> <li>ACTIVE EXHALATION VALVE</li> <li>20. ACTIVE EXHALATION VALVE</li> <li>21. EFS AZ SV</li> <li>22. SAFETY SV</li> <li>23. WATER DUMP SV</li> <li>24. BLENDER STEPPER MOTOR</li> <li>25. CROSSOVER SV</li> <li>26. OXYGEN SWITCH SV</li> <li>27. GAS CV</li> <li>28. HEATER</li> <li>29. FAN MOTOR</li> <li>30. COMPRESSOR MOTOR</li> <li>31. FAW AZ SV</li> <li>33. BOOSTER DRIVE SV</li> <li>33. BOOSTER DRIVE SV</li> <li>33. BOOSTER DRIVE SV</li> <li>33. BOOSTER DRIVE SV</li> <li>34. VACUUM PUMP SV</li> <li>35. ESOP FILL SV</li> <li>36. ESOP EVACUATION SV</li> <li>37. PROX PURGE SV</li> <li>38. EFS PURGE SV</li> <li>39. WFS PURGE SV</li> <li>30. CLAM SV</li> <li>41. 4 LPM SV</li> <li>43. NEONATOL SENSOR HEATER</li> </ol> | AZ - AUTO ZERO.<br>CV - CONTROL VALVE.<br>DIF XDUCER - DIFFERENTIAL PRESSURE TRANSDUCER.<br>EFS - EXHALED FLOW SENSOR<br>EPM - ENHANCED PATIENT MONITORS<br>ESOP - ESOPHAGEAL.<br>EXH - ENHANCED PATIENT MONITORS<br>ESOP - ESOPHAGEAL.<br>EXH - ENHANCED PATIENT MONITORS<br>ESOP - ESOPHAGEAL.<br>EXH - AIRWAY FLOW<br>GDE - GAS DELIVERY ENGINE.<br>HP - HIGH PRESSURE.<br>HP - HIGH PRESSURE.<br>ID - IDENTIFIER.<br>ID - IDENTIFIER.<br>IP - HUCH PRESSURE.<br>PROX - PROXIMAL (AIRWAY) PRESSURE.<br>PROX - PROXIMAL (AIRWAY) PRESSURE.<br>PROX - PROXIMAL<br>PRE - SOPHAGEAL PRESSURE.<br>PROX - PROXIMAL<br>PRE - SOPHAGEAL PRESSURE.<br>PROX - PROXIMAL<br>PRESSURE.<br>PROX - PROXIMAL (AIRWAY) PRESSURE.<br>PROX - PROXIMAL<br>PRESSURE.<br>PROX - PROXIMAL (AIRWAY) PRESSURE.<br>PROX - PROX - |
| NOTE: SYSTEM IS SHOWN IN DE-ENERGIZED STATE.                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XDUCER - TRANSDUCER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Copyright © July 2003 VIASYS Healthcare                                                                                                                          | L1524 Revision B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Service Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



L1524 Revision B

Copyright © July 2003 VIASYS Healthcare

B: Diagrams & Schematics

**AVEA Ventilator Systems** 



L1524 Revision B



51000-40839

# **Appendix C Specifications**

# **Pneumatic Supply**

## Air or Heliox Supply

| Pressure Range: | 20 to 80 psig                 | (Supply Air)       |                                      |
|-----------------|-------------------------------|--------------------|--------------------------------------|
|                 | 20 to 80 psig                 | (Supply Heliox)    |                                      |
|                 | 3 to 10 psig                  | (Compressor Air)   |                                      |
| Temperature:    | 10 to 62 °C (50 to            | 143.6 °F)          |                                      |
| Humidity:       | Dew Point of gas<br>(minimum) | should be 1.7 °C ( | (3 °F) below the ambient temperature |
| Minimum Flow:   | 80 L/MIN at 20 ps             | sig                |                                      |
| Inlet Fitting:  | CGA DISS-type b               | ody, No. 1160      | (Air)                                |
|                 | CGA DISS-type b               | ody, No. 1180      | (Heliox)                             |

## **Oxygen Supply**

| Pressure Range: | 20 to 80 psig                 | (Supply Oxygen)                                       |
|-----------------|-------------------------------|-------------------------------------------------------|
| Temperature:    | 10 to 40 °C (50 to            | 104 °F)                                               |
| Humidity:       | Dew Point of gas<br>(minimum) | should be 1.7 °C (3 °F) below the ambient temperature |
| Minimum Flow:   | 80 L/MIN at 20 ps             | sig                                                   |
| Inlet Fitting:  | CGA DISS-type b               | ody, No. 1240                                         |

# **Electrical Supply**

## **AC Power Supply**

The ventilator operates within specification when connected to the following AC power supplies:

| Nominal | Voltage Range    | Frequency Range |
|---------|------------------|-----------------|
| 100 VAC | (85 to 110 VAC)  | 47 to 65 Hz     |
| 120 VAC | (102 to 132 VAC) | 55 to 65 Hz     |
| 230 VAC | (196 TO 253 VAC) | 47 to 65 Hz     |
| 240 VAC | (204 TO 264 VAC) | 47 to 65 Hz     |

## **DC Power Supply**

The ventilator can also operate from a 24 VDC power source (internal or external battery).

#### **Internal Battery:**

The ventilator operates within specification for a minimum duration of 30 minutes when operated on the internal battery. Maximum charge time to achieve a full charge is 8 to 12 hours.

#### **External Battery:**

22.0 to 26.4 VDC

# Data Input / Output

### Analog Inputs

The ventilator provides up to 8 programmable channels for analog signal inputs. Each channel shall be scalable for the input ranges specified.

| Ranges:     | 0 to 1 VDC               |
|-------------|--------------------------|
|             | 0 to 5 VDC               |
|             | 0 to 10 VDC              |
| Resolution: | 0.25 mV (for 0 to 1 VDC) |
|             | 1.37 mV (for 0 to 5 VDC) |
|             | 2.5 mV (for 0 to 10 VDC) |

### Analog Outputs

The ventilator provides 4 signals to the analog output connector:

#### 1. Airway Pressure, PAW:

| Connection   | DB25 connector, pin 22. Ground pins 9-13                 |
|--------------|----------------------------------------------------------|
| Range:       | -60 to 140 cmH <sub>2</sub> O                            |
| Scale:       | 1 cmH <sub>2</sub> O/25 mV                               |
| Accuracy:    | $\pm$ 50 mV or $\pm$ 5% of reading, whichever is greated |
| Zero Offset: | 1.5 VDC at 0 cmH <sub>2</sub> O                          |

#### 2. Flow

Connection DB25 connector, pin 23. Ground pins 9-13

#### Inspiratory/Expiratory flow:

When selected, the ventilator provides a continuous analog voltage representative of inspiratory flow minus expiratory flow.

| Range:        | -300 to 200 L/MIN             | (Adult)                     |     |
|---------------|-------------------------------|-----------------------------|-----|
|               | -120 to 80 L/MIN (Pe          | diatric)                    |     |
|               | -60 to 40 L/MIN (Ne           | eonate)                     |     |
| Scale Factor: | 1 L/MIN / 10 mV (Ad           | ult)                        |     |
|               | 1 L/MIN / 25 mV (Pe           | diatric)                    |     |
|               | 1 L/MIN / 50 mV (Ne           | eonate)                     |     |
| Accuracy:     | $\pm$ 10% of reading or $\pm$ | ⊧ 30 mV, whichever is great | ter |

|                                                                                                | Zero Offset:                                                       | 3.0 VDC at 0 L/M                 | IN                                                       |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|----------------------------------------------------------|--|
|                                                                                                | Machine:                                                           |                                  |                                                          |  |
| When selected the ventilator provides a continuous analog voltage represe delivered flow.      |                                                                    |                                  | es a continuous analog voltage representative of machine |  |
|                                                                                                | Range:                                                             | 0 to 200 L/MIN                   | (Adult)                                                  |  |
|                                                                                                |                                                                    | 0 to 100 L/MIN                   | (Pediatric)                                              |  |
|                                                                                                |                                                                    | 0 to 50 L/MIN                    | (Neonate)                                                |  |
|                                                                                                | Scale Factor:                                                      | 1 L/MIN / 25 mV                  | (Adult)                                                  |  |
|                                                                                                |                                                                    | 1 L/MIN / 50 mV                  | (Pediatric)                                              |  |
| 1 L/MIN / 100 mV (Neonate)<br>Accuracy: $\pm$ 10% of reading or $\pm$ 30 mV, whichever is grea |                                                                    | 1 L/MIN / 100 mV (Neonate)       |                                                          |  |
|                                                                                                |                                                                    | or ± 30 mV, whichever is greater |                                                          |  |
|                                                                                                | Zero Offset:                                                       | None                             |                                                          |  |
| 3.                                                                                             | Volume:                                                            |                                  |                                                          |  |
| Cor                                                                                            | Connection DB25 connector, pin 24. Ground pins 9-13                |                                  | pin 24. Ground pins 9-13                                 |  |
| Rar                                                                                            | nge:                                                               | -1.00 to 4.00 L                  | (Adult)                                                  |  |
|                                                                                                |                                                                    | -200 to 800 mL                   | (Pediatric)                                              |  |
|                                                                                                |                                                                    | -100 to 400 mL                   | (Neonate)                                                |  |
| Sca                                                                                            | lle Factor:                                                        | 1 L / V                          | (Adult)                                                  |  |
|                                                                                                |                                                                    | 1 mL / 5 mV                      | (Pediatric)                                              |  |
|                                                                                                |                                                                    | 1 mL / 10 mV                     | (Neonate)                                                |  |
| Acc                                                                                            | ccuracy: $\pm$ 10% of reading or $\pm$ 30 mV, whichever is greater |                                  | or $\pm$ 30 mV, whichever is greater                     |  |
| Zer                                                                                            | o Offset:                                                          | 1.000 VDC                        |                                                          |  |
| ٨                                                                                              | Broath Dhaco                                                       |                                  |                                                          |  |

#### 4. Breath Phase

DB25 connector, pin 25. Ground pins 9-13. Connection

The ventilator provides a continuous analog voltage representative of breath phase (Inspiration = 5 VDC, Expiration = 0 VDC).

### **Digital Communication**

The ventilator has two RS-232 ports for bi-directional communication of data: RS-232 Ch1 and RS-232 Ch2.

#### Printer

The ventilator has a standard 25-pin female Centronics parallel printer port for interfacing to an external printer.

#### Remote Nurse Call

The ventilator has a modular jack configured to interface with external systems that are either wired for normally open (N.O., close on alarm) or normally closed (N.C., open on alarm) signals.

In the active state, the remote alarm can sink 1.0 A.

## Independent Lung Ventilation (ILV)

The ventilator provides an output (master) and an input (slave) for synchronization of ventilators. The output supplies a 5 VDC logic signal synchronized to the breath phase of the master.

### Video Output

The ventilator provides a video output connector which allows for interfacing to an externally located 256-color, 800 x 600, SVGA monitor.

# **Atmospheric & Environmental Specifications**

### Temperature and Humidity

| Storage      |                             |
|--------------|-----------------------------|
| Tenperature: | –20 to 60 °C (–4 to 140 °F) |
| Humidity:    | 0 to 95% RH non-condensing  |
| Operating    |                             |
| Temperature: | 5 to 40 °C (41 to 104 °F)   |
| Humidity:    | 0 to 95% RH non-condensing  |

### **Barometric Pressure**

760 to 545 mmHg

# **Physical Dimensions**

### **Overall Size**

| Ventilator | 17" W x 16" D x 10.5" H      |
|------------|------------------------------|
| UIM        | 16.25" W x 2.5" D x 13.75" H |

### Weight

| /entilator w/ UIM | <u>&lt;</u> 73 lbs. |
|-------------------|---------------------|
| Compressor        | <u>&lt;</u> 7 lbs.  |

# Accessories

(

### **Pall Microbial Filter**

#### Resistance

The exhalation filter supplied with your AVEA ventilator is manufactured by Pall Medical of Ann Arbor, MI, USA. The published maximum resistance of this filter is 4 cmH2O at 20 L/min for the Intervene 255 Filter (small) and 4cm H2O at 100 L/min for the 725 (large) filter.

#### Compliance

The compliance for the small filter is < 0.5 ml/cmH2O and for the large filter is < 0.4 ml/cmH2O

#### Materials

Materials used in the contruction of both filters have passed USP Class VI 121° C Plastic and Cytoxicity test.

For further information please contact Pall Medical.

### Water Trap

#### Resistance

The resistance of the small water trap assembly including the collection bottle is < than 0.25 cmH2O at 20 L/min.

#### Compliance

The compliance of both water trap assemblies including the collection bottle is < 0.2 ml/cmH2O.

# Appendix D Data Communication Protocol

This document defines the data content, message formats and communication protocols for direct access to digital data on the AVEA ventilator.

It is intended for software engineers developing software for the AVEA and any third party who may wish to accept or exchange digital data with the AVEA ventilator.

The information contained herein pertains to data and communication for AVEA Software releases V2.11 and higher, except where superceded by subsequent revisions of this document.

# Overview

This document describes serial data communication between the AVEA ventilator and a host computer. The host provides information to the ventilator to request data or change transmission characteristics. The ventilator sends data to the host when requested, or if so configured, as new data becomes available. Data types available from the ventilator include;

- Settings Data
- Digital Monitored Data
- Alarm and Status Data
- Scalar (Waveform) Data

Data transmission is via a packet format protocol. The following sections describe the electrical connection requirements, the format of the data packets, and the sequence of transmission and/or exchange.

# **Physical Requirements**

### **Connection Cable**

The electrical connection shown in Figure 1 is required to connect to a typical Personal Computer. Although this cable configuration is not readily available off the shelf, it can easily be constructed from off the shelf components.

Recommended is a 9-pin F-F serial Null Modem Cable with a 9-pin M-M gender adapter on the AVEA end.



Figure D.1

# **Communication Settings**

| The communication settings should | be set to the following: |
|-----------------------------------|--------------------------|
| Baud Rate:                        | 38400                    |
| Data Bits:                        | 8                        |
| Parity:                           | None                     |
| Stop Bits:                        | 1                        |
| Flow Control:                     | None                     |

# Limitations

Communication with the AVEA Ventilator is subject to the following limitations:

- Scalar data cannot be enabled at Baud rates of less than 38400.
- All data transmission may be disabled under certain circumstances, for example, if an alternate data channel (MIB) is selected for communication.
- The Baud rate is currently fixed at 38400.

# **Packet Format**

### Packet

| STX      |               |                                                      | Payload                                 | CheckSum    |
|----------|---------------|------------------------------------------------------|-----------------------------------------|-------------|
| STX      |               |                                                      |                                         |             |
|          | Definition:   | Start of transmission per ASCII.                     |                                         |             |
|          | Size:         | One (1) byte.                                        |                                         |             |
|          | Value:        | 2 decimal, 02h Hexadecimal.                          |                                         |             |
| Payload  |               |                                                      |                                         |             |
|          | Definition:   | Object of the transmission; desired message content. |                                         |             |
|          | Size: Varies. |                                                      |                                         |             |
|          | Value:        | N/A                                                  |                                         |             |
| CheckSum |               |                                                      |                                         |             |
|          | Definition:   | Simple on                                            | e's complement of sum of all bytes in t | he Payload. |
|          | Size:         | One (1) by                                           | /te.                                    |             |
|          | Value:        | Per Defini                                           | tion.                                   |             |
|          |               |                                                      |                                         |             |
# Payload

| Header  |             | Boo                | ły                                                  |                                                   |                           |
|---------|-------------|--------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------|
|         | Header      |                    |                                                     |                                                   |                           |
| Reserve | d           | ID                 | ID Body Size                                        |                                                   |                           |
|         | Size:       | Four (4            | ) bytes; unsigned 32-bit i                          | nteger (bitfield); little e                       | endian.                   |
|         | Value:      | N/A.               |                                                     |                                                   |                           |
|         | Reserved    |                    |                                                     |                                                   |                           |
|         | Definition: | Reserv             | ed for manufacturer's use                           | 9.                                                |                           |
|         | Size:       | One (1             | ) byte; (bitfield 24:31).                           |                                                   |                           |
|         | Value:      | N/A.               |                                                     |                                                   |                           |
|         | ID          |                    |                                                     |                                                   |                           |
|         | Definition: | Identifie          | es type of message body                             |                                                   |                           |
|         | Size:       | One (1             | ) byte; (bitfield 16:23).                           |                                                   |                           |
|         | Value:      | PRIMA              | RY SETTINGS DATA:                                   |                                                   | 0                         |
|         | ADVANCED S  | SETTINGS           | DATA:                                               |                                                   | 1                         |
|         | ALARM SETT  | INGS DAT           | A:                                                  |                                                   | 2                         |
|         | PATIENT SE  | ITINGS DA          | TA:                                                 |                                                   | 3                         |
|         | OPERATION   | AL SETTIN          | GS DATA:                                            |                                                   | 4                         |
|         | CONFIG SET  | TINGS DAT          | ΓA:                                                 |                                                   | 5                         |
|         | DIGITAL MON | NITOR DAT          | A:                                                  |                                                   | 6                         |
|         | ALARMS AND  | STATUS             | DATA:                                               |                                                   | 7                         |
|         | SCALAR (WA  | VEFORM)            | DATA:                                               |                                                   | 8                         |
|         | SERVICE RE  | QUEST:             |                                                     |                                                   | 9                         |
|         | SERVICE RE  | QUEST RE           | PLY:                                                |                                                   | 10                        |
|         | Body Size   |                    |                                                     |                                                   |                           |
|         | Definition: | Total n<br>excludi | umber of 32-bit word equ<br>ng Header). Body Size n | ivalents (bytes /4) in t<br>nust always be evenly | he Body of<br>divisible b |
|         | Size:       | Two (2             | ) bytes; unsigned 16-bit i                          | nteger; (bitfield 0:15);                          | little endiar             |

# Body

Value:

Varies.

| Definition: | A specific structure and type of transmitted data; one of the following sections. |
|-------------|-----------------------------------------------------------------------------------|
| Size:       | Varies. See definitions below.                                                    |
| Value:      | N/A                                                                               |

# Service Request

| Definition: | Identifies a request for data or change in service. Sent from the Host to the Ventilato to request data of a certain type, or to request a change to the transmit mode. |    |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Body Size:  | 1 word (4 bytes); unsigned 32-bit integer; little endian.                                                                                                               |    |  |  |  |  |  |
| Value:      | REQUEST PRIMARY SETTINGS DATA:                                                                                                                                          | 0  |  |  |  |  |  |
|             | REQUEST ADVANCED SETTINGS DATA:                                                                                                                                         | 1  |  |  |  |  |  |
|             | REQUEST ALARM SETTINGS DATA:                                                                                                                                            | 2  |  |  |  |  |  |
|             | REQUEST PATIENT SETTINGS DATA:                                                                                                                                          | 3  |  |  |  |  |  |
|             | REQUEST OPERATIONAL SETTINGS DATA:                                                                                                                                      | 4  |  |  |  |  |  |
|             | REQUEST CONFIGURATION SETTINGS DATA:                                                                                                                                    | 5  |  |  |  |  |  |
|             | REQUEST DIGITAL MONITOR DATA:                                                                                                                                           | 6  |  |  |  |  |  |
|             | REQUEST ALARMS AND STATUS DATA:                                                                                                                                         | 7  |  |  |  |  |  |
|             | SET MONITOR MODE=REQUEST:                                                                                                                                               | 8  |  |  |  |  |  |
|             | SET MONITOR MODE=AS AVAILABLE:                                                                                                                                          | 9  |  |  |  |  |  |
|             | SET ALARM AND STATUS MODE=REQUEST:                                                                                                                                      | 10 |  |  |  |  |  |
|             | SET ALARM AND STATUS MODE=AS AVAILABLE:                                                                                                                                 | 11 |  |  |  |  |  |
|             | SET SCALAR MODE=DISABLED:                                                                                                                                               | 12 |  |  |  |  |  |
|             | SET SCALAR MODE=AS AVAILABLE:                                                                                                                                           | 13 |  |  |  |  |  |
|             |                                                                                                                                                                         |    |  |  |  |  |  |

# Service Request Reply

| Definition: | Response to a Service Request. This reply is only sent if there is no other natural response to the request. Requests for data are replied with the data. Request for a change in service would receive a Service Request Reply. If the request was successful, the same value of the Service Request is replied. If the request cannot be satisfied for any reason, the one's complement of the Service Request value is replied. |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Body Size:  | 1 word (4 bytes); unsigned 32-bit integer; little endian.                                                                                                                                                                                                                                                                                                                                                                          |
| Value:      | If Successful, Value = Service Request Value;<br>If NOT Successful, Value = ~(Service Request Value).                                                                                                                                                                                                                                                                                                                              |

# Primary Settings Data

| 1st              |           |             |         |                              |        |                                          |      |       |      |       |       |      | 14th |
|------------------|-----------|-------------|---------|------------------------------|--------|------------------------------------------|------|-------|------|-------|-------|------|------|
| Rate             | Vt        | Pinsp       | Finsp   | Ti                           | Pause  | PSV                                      | PEEP | Ftrig | FiO2 | Phigh | Thigh | Tlow | Plow |
|                  |           |             |         |                              |        |                                          |      |       |      |       |       |      |      |
| Definition: Rate |           | bp          | m       | Breath rate (Rate)           |        |                                          |      |       |      |       |       |      |      |
|                  | Vt mL x10 |             | L x10   | Tidal Volume (Volume)        |        |                                          |      |       |      |       |       |      |      |
|                  |           | Pinsp cmH2O |         | nH2O                         | Ins    | Inspiratory Pressure (Insp Pres)         |      |       |      |       |       |      |      |
| Finsp L/min x10  |           |             | min x10 | Inspiratory Flow (Insp Flow) |        |                                          |      |       |      |       |       |      |      |
| Ti               |           | se          | c x100  | Inspiratory Time (Insp Time) |        |                                          |      |       |      |       |       |      |      |
|                  |           | Pa          | ause    | se                           | c x100 | Inspiratory Pause (Insp Pause)           |      |       |      |       |       |      |      |
|                  |           | P           | SV      | cn                           | nH2O   | Pressure Support Ventilation level (PSV) |      |       |      |       |       |      |      |

| D: Data Communication Protocol | AVEA Ve   | ntilator Systems                         | 183 |
|--------------------------------|-----------|------------------------------------------|-----|
| PEEP                           | cmH2O     | PEEP (PEEP)                              |     |
| Ftrig                          | L/min x10 | Flow Trigger Sensitivity (Flow Trig)     |     |
| FiO2                           | %         | Fractional Inspiratory Oxygen (FiO2)     |     |
| Phigh                          | cmH2O     | Pressure High, APRV/BiPhasic (Pres High) |     |
| Thigh                          | sec x10   | Time High, APRV/BiPhasic (Time High)     |     |
| Tlow                           | sec x10   | Time Low, APRV/BiPhasic (Time Low)       |     |
| Plow                           | cmH2O     | Pressure Low, APRV/BiPhasic (Pres Low)   |     |

Body Size:7 words (28 bytes). Each field, signed 16-bit integer; little endian.Value:Per definition.

# Advanced Settings Data

| 1 <sup>st</sup> |                        |             |                        |            |                                         |                                                           |               |          |  |  |  |
|-----------------|------------------------|-------------|------------------------|------------|-----------------------------------------|-----------------------------------------------------------|---------------|----------|--|--|--|
| Fbias           | Vmach                  | Vlimit      | Tr                     | ise        | Fcycle                                  | Trise psv                                                 | Fcycle psv    | Tmax psv |  |  |  |
|                 |                        |             | ·                      |            |                                         |                                                           |               | 16th     |  |  |  |
| Wave            | Sigh                   | Ptrig       | Vsyn                   | c T        | rise Vsync                              | Tsync high                                                | Tsync low     | PSVhigh  |  |  |  |
|                 |                        |             |                        |            |                                         |                                                           |               |          |  |  |  |
| Definition:     | Fbias                  |             | L/min                  | x10        | Bias F                                  | Bias Flow (Bias Flow)                                     |               |          |  |  |  |
|                 | Vmach                  |             | mL x1                  | 0          | Machir                                  | ne Volume (Ma                                             | ach Vol)      |          |  |  |  |
|                 | Vlimit                 |             | mL x1                  | 0          | Volum                                   | e Limit (Vol Li                                           | mit)          |          |  |  |  |
|                 | Trise                  |             | 19                     |            | Pressu                                  | re Control Ris                                            | se Time (Rise | Time)    |  |  |  |
|                 | Fcycle                 |             | % ?5                   |            | Flow C                                  | cycle % of PIF                                            | R (Flow Cycle | )        |  |  |  |
|                 | Trise-psv              |             | 19                     |            | PSV R                                   | PSV Rise Time (PSV Rise)                                  |               |          |  |  |  |
|                 | Fcycle-psv<br>Tmax-psv |             | %<br>sec x100          |            | PSV F                                   | PSV Flow Cycle % of PIFR (PSV Cycle)                      |               |          |  |  |  |
|                 |                        |             |                        |            | PSV Maximum Inspiratory Time (PSV Tmax) |                                                           |               |          |  |  |  |
|                 | Wave                   |             | 0/1                    |            | Decele<br>(Wave                         | Decelerating Flow Volume Waveform OFF/ON (Waveform)       |               |          |  |  |  |
|                 | Sigh                   |             | 0/1                    |            | Sigh V                                  | Sigh Volume Breath OFF/ON (Sigh)                          |               |          |  |  |  |
|                 | Ptrig                  |             | cmH2O x10<br>0/1<br>19 |            | Pressu                                  | Pressure Trigger Sensitivity (Pres Trig)                  |               |          |  |  |  |
|                 | Vsync                  |             |                        |            | Vsync                                   | Vsync mode OFF/ON (Vsync)                                 |               |          |  |  |  |
|                 | Trise-Vsy              | nc          |                        |            | Vsync                                   | Vsync Rise Time (Vsync Rise)                              |               |          |  |  |  |
|                 | Tsync-hig              | h           | %                      |            | Sync V<br>(T Higl                       | Sync Window % of APRV/BiPhasic Time High<br>(T High Sync) |               |          |  |  |  |
|                 | Tsync-low              |             | %                      |            | Sync V<br>(T Low                        | Sync Window % of APRV/BiPhasic Time Low<br>(T Low Sync)   |               |          |  |  |  |
|                 | PSVhigh                |             | 0/1                    |            | PSV C<br>High P                         | PSV OFF/ON with APRV/BiPhasic Pres High(T<br>High PSV)    |               |          |  |  |  |
| Body Size:      | 8 words                | s (32 bytes | s). Eac                | h field, s | signed 16-bit                           | integer; little e                                         | endian.       |          |  |  |  |
| Value:          | Per def                | inition.    |                        |            |                                         |                                                           |               |          |  |  |  |

5<sup>th</sup>

| High P <sub>peak</sub> | Low P <sub>peak</sub> | High $V_{e}$       | Low $V_{e}$ | High V <sub>te</sub>            |                            |  |  |
|------------------------|-----------------------|--------------------|-------------|---------------------------------|----------------------------|--|--|
|                        |                       |                    |             |                                 |                            |  |  |
| 6 <sup>th</sup>        |                       |                    |             | 10 <sup>th</sup>                |                            |  |  |
| Low V <sub>te</sub>    | Low PEEP              | High Rate          | Apnea       | Reserved                        |                            |  |  |
|                        |                       |                    |             |                                 |                            |  |  |
| Definition:            | High $P_{pea}$        | k cmH <sub>2</sub> | 0 F         | High Peak Pressure (High Ppeak) |                            |  |  |
|                        | Low P <sub>peak</sub> | cmH <sub>2</sub>   | O L         | Low Peak Pressure (Low Ppeak)   |                            |  |  |
|                        | High V <sub>e</sub>   | L x10              | 0 F         | High Minute Volume (High Ve)    |                            |  |  |
|                        | Low $V_{e}$           | L x10              | 0 L         | Low Minute Volume (Low Ve)      |                            |  |  |
|                        | High V <sub>te</sub>  | mL x′              | 10 F        | High Tidal Volume (High Vte)    |                            |  |  |
|                        | Low $V_{\text{te}}$   | mL x′              | 10 L        | Low Tidal Volume (Low Vte)      |                            |  |  |
|                        | Low PEE               | P cmH <sub>2</sub> | O L         | Low PEEP (Low PEEP)             |                            |  |  |
|                        | High Rate             | e bpm              | F           | High Breath Rate (High Rate)    |                            |  |  |
|                        | Apnea                 |                    | A           | Apnea Interval (Apnea Interval) |                            |  |  |
|                        | Reserved              | N/A                | F           | Reserved for                    | manufacturer's use.        |  |  |
| Body Size:             | 5 words (             | 20 bytes).         | Each field  | , signed 16-b                   | it integer; little endian. |  |  |
| Value:                 | Per defin             | ition.             |             |                                 |                            |  |  |

Alarm Settings Data

Configuration Settings Data

| 1st                 |              |                  |                      |            |       | 6th |  |
|---------------------|--------------|------------------|----------------------|------------|-------|-----|--|
| Lang                | Alm FiO2     | Aout             | ILV Mode             | Ain Gain   | Pbaro |     |  |
| Body Size:          | 4 words (16  | bytes); each fi  | eld see below.       |            |       |     |  |
| Value: N/A.         |              |                  |                      |            |       |     |  |
| Lang (Langua        | ge)          |                  |                      |            |       |     |  |
| Definition:         | Language S   | election for Us  | er Interface.        |            |       |     |  |
| Size:               | Four (4) byt | es; unsigned 32  | 2-bit integer; litt  | le endian. |       |     |  |
| Value:              | ENGLISH      |                  |                      | 0          |       |     |  |
|                     | FRENCH       |                  |                      | 1          |       |     |  |
|                     | GERMAN       |                  |                      | 2          |       |     |  |
|                     | ITALIAN      |                  |                      | 3          |       |     |  |
|                     | PORTUGU      | ESE              |                      | 4          |       |     |  |
|                     | SPANISH      |                  |                      | 5          |       |     |  |
| Alm FiO2 (O2 Alarm) |              |                  |                      |            |       |     |  |
| Definition:         | Enable/Disa  | ble setting of F | iO2 Alarm.           |            |       |     |  |
| Size:               | Two (2) byte | es; unsigned 16  | 6-bit integer; littl | e endian.  |       |     |  |
| Value:              | ENABLED      |                  |                      | 0          |       |     |  |
|                     | DISABLED     |                  |                      | 1          |       |     |  |

1<sup>st</sup>

| Aout (Analog Ou  | itput Type)                                          |                |  |  |  |  |
|------------------|------------------------------------------------------|----------------|--|--|--|--|
| Definition:      | Selection of Flow Waveform for Analog Output.        |                |  |  |  |  |
| Size:            | Two (2) bytes; unsigned 16-bit integer; little e     | endian.        |  |  |  |  |
| Value:           | Wye Flow                                             | 0              |  |  |  |  |
|                  | Machine Flow                                         | 1              |  |  |  |  |
| ILV Mode (ILV M  | ode)                                                 |                |  |  |  |  |
| Definition:      | Independent Lung Ventilation configuration of        | of ventilator. |  |  |  |  |
| Size:            | Four (4) bytes; unsigned 32-bit integer; little      | endian.        |  |  |  |  |
| Value:           | ILV OFF                                              | 0              |  |  |  |  |
|                  | ILV MASTER                                           | 1              |  |  |  |  |
|                  | ILV SLAVE                                            | 2              |  |  |  |  |
| Ain Gain(Analog  | Input Gain)                                          |                |  |  |  |  |
| Definition:      | Selection of Amplifier Gain applied to Analog        | JInputs.       |  |  |  |  |
| Size:            | Two (2) bytes; unsigned 16-bit integer; little e     | endian.        |  |  |  |  |
| Value:           | High Gain; 0-1V                                      | 0xFFFF         |  |  |  |  |
|                  | Med. Gain; 0-5V                                      | 0xAAAA         |  |  |  |  |
|                  | Low Gain; 0-10V                                      | 0x0000         |  |  |  |  |
| Pbaro (Baro Pres | 5)                                                   |                |  |  |  |  |
| Definition:      | Barometric pressure setting of ventilator env        | ironment.      |  |  |  |  |
| Size:            | Two (2) bytes; signed 16-bit integer; little endian. |                |  |  |  |  |

# Value: Per definition; mmHg.

# **Operational Settings Data**

| 1st         |             |                                            |                    |              |       | 7th   |  |  |  |
|-------------|-------------|--------------------------------------------|--------------------|--------------|-------|-------|--|--|--|
| Mode        | AAC         | ETT Len                                    | ETT Dia            | Leak Comp    | CCC k | Humid |  |  |  |
|             |             |                                            |                    |              |       |       |  |  |  |
| Body Size:  | 4 words (1  | 6 bytes); each f                           | field see below.   |              |       |       |  |  |  |
| Value:      | N/A.        |                                            |                    |              |       |       |  |  |  |
| Mode (Mode) |             |                                            |                    |              |       |       |  |  |  |
| Definition: | Breath deli | Breath delivery Mode setting.              |                    |              |       |       |  |  |  |
| Size:       | Four (4) by | /tes; unsigned 3                           | 32-bit integer; li | ttle endian. |       |       |  |  |  |
| Value:      | Not Specifi | ied                                        |                    |              | 0     |       |  |  |  |
|             | APRV/BiPI   | APRV/BiPhasic; Volume Control Apnea Backup |                    |              |       |       |  |  |  |
|             | APRV/BiPl   | hasic; Pressure                            | Control Apnea      | Backup       | 2     |       |  |  |  |
|             | PRVC SIM    | V                                          |                    |              | 3     |       |  |  |  |
|             | PRVC Ass    | ist/Control                                |                    |              | 4     |       |  |  |  |
|             | CPAP; TC    | PL Apnea Back                              | up                 |              | 5     |       |  |  |  |

|                    | TCPL SIMV       |                                           | 6         |
|--------------------|-----------------|-------------------------------------------|-----------|
|                    | TCPL Assist/Co  | ntrol                                     | 7         |
|                    | CPAP; Pressure  | e Control Apnea Backup                    | 8         |
|                    | Pressure SIMV   |                                           | 9         |
|                    | Pressure Assist | /Control                                  | 10        |
|                    | CPAP; Volume    | Control Apnea Backup                      | 11        |
|                    | Volume SIMV     |                                           | 12        |
|                    | Volume Assist/0 | Control                                   | 13        |
| AAC (AAC)          |                 |                                           |           |
| Definition:        | Automatic Ai    | rway Compensation Enable/Disable.         |           |
| Size:              | Two (2) bytes   | s; unsigned 16-bit integer; little endiar | ۱.        |
| Value:             | DISABLED        | 0                                         |           |
|                    | ENABLED         | 1                                         |           |
| ETT Len (Length)   |                 |                                           |           |
| Definition:        | Endotrachea     | I Tube Length.                            |           |
| Size:              | Two (2) bytes   | s; signed 16-bit integer; little endian.  |           |
| Value:             | Per definition  | ; cm x10                                  |           |
| ETT Dia (Diameter) |                 |                                           |           |
| Definition:        | Endotrachea     | I Tube Diameter.                          |           |
| Size:              | Two (2) bytes   | s; signed 16-bit integer; little endian.  |           |
| Value:             | Per definition  | ; mm x2                                   |           |
| Leak Comp (Leak Co | omp)            |                                           |           |
| Definition:        | System Leak     | Compensation Enable/Disable.              |           |
| Size:              | Two (2) byte:   | s; unsigned 16-bit integer; little endiar | ۱.        |
| Value:             | DISABLED        | 0                                         |           |
|                    | ENABLED         | 1                                         |           |
| CCC k (Circuit Com | oliance)        |                                           |           |
| Definition:        | Constant (k)    | for enabling Circuit Compliance Com       | pensation |
| Size:              | Two (2) byte    | s; signed 16-bit integer; little endian.  |           |
| Value:             | Per definition  | ; mL/cmH2O x10.                           |           |
| Humid (Humidifier) |                 |                                           |           |
| Definition:        | Active Humic    | lifier Enable/Disable.                    |           |
| Size:              | Two (2) byte:   | s; unsigned 16-bit integer; little endiar | ۱.        |
| Value:             | DISABLED        | 0                                         |           |
|                    | ENABLED         | 1                                         |           |

# Patient Settings Data

| 1st 4th<br>Patient Size<br>Pt Weight<br>Patient ID<br>Reserved |                                                                      |
|----------------------------------------------------------------|----------------------------------------------------------------------|
| Body Size:                                                     | 10 words (40 bytes); each field see below.                           |
| Value: N/A.                                                    |                                                                      |
| Patient Size (Pa                                               | tient Size)                                                          |
| Definition:                                                    | Patient Size setting.                                                |
| Size:                                                          | Four (4) bytes; unsigned 32-bit integer; little endian.              |
| Value:                                                         | NEO 0                                                                |
|                                                                | PED 1                                                                |
|                                                                | ADULT 2                                                              |
| Pt Weight (Pt W                                                | eight)                                                               |
| Definition:                                                    | Patient Weight (Ideal Body Weight) setting for normalizing monitors. |
| Size:                                                          | Two (2) bytes; signed 16-bit integer; little endian.                 |
| Value:                                                         | Per definition; kg x100.                                             |
| Patient ID (Patie                                              | ent ID)                                                              |
| Definition:                                                    | Patient Identification setting.                                      |
| Size:                                                          | 32 bytes; ASCII zero terminated string.                              |
| Value:                                                         | N/A                                                                  |
| Reserved                                                       |                                                                      |
| Definition:                                                    | Reserved for manufacturer's use.                                     |
| Size:                                                          | Two (2) bytes.                                                       |
| Value:                                                         | N/A                                                                  |
| Digital Monitor                                                | Data                                                                 |
| 1st                                                            | 10th                                                                 |
| Vte Vte/kg Vt                                                  | Vti/kg Spon Vte Spon Vte/kg Mand Vte Mand Vte/kg Vdel Leak           |
|                                                                |                                                                      |
| 11st                                                           | 20th                                                                 |
| Ve Ve/kg Spo                                                   | n Ve Spon Ve/kg Total Rate Spon Rate Ti Te I:E RSBI                  |
|                                                                |                                                                      |
| 21st                                                           | 30th                                                                 |
|                                                                |                                                                      |

| Ppeak     Pmean     Pplat     PEEP     Pair     PO2     FiO2     Cdyn     Cdyn/kg     Cstat       31st     35th       C/C20     Rrs     PIER     PEER | 2100     |       |       |      |      |     |      |      |         | 00011 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|------|------|-----|------|------|---------|-------|
| 31st 35th 35th Cstat/kg C/C20 Brs PIEB PEEB                                                                                                           | Ppeak    | Pmean | Pplat | PEEP | Pair | PO2 | FiO2 | Cdyn | Cdyn/kg | Cstat |
| Cstat/kg C/C20 Rrs PIER PEER                                                                                                                          | 31st     |       |       |      |      |     |      |      |         | 35th  |
|                                                                                                                                                       | Cstat/kg |       | C/C20 |      | Rrs  |     | PIFR |      | PEFR    |       |

Definition:

| *Vte        | L x100,000,000   | Expiratory Tidal Volume               |
|-------------|------------------|---------------------------------------|
| Vte/kg      | mL/kg x100       | Expiratory Tidal Volume, Normalized   |
| *Vti        | L x100,000,000   | Inspiratory Tidal Volume              |
| Vti/kg      | mL/kg x100       | Inspiratory Tidal Volume, Normalized  |
| *Spon Vte   | L x100,000,000   | Spontaneous Tidal Volume              |
| Spon Vte/kg | mL/kg x100       | Spontaneous Tidal Volume, Normalized  |
| *Mand Vte   | L x100,000,000   | Mandatory Tidal Volume                |
| Mand Vte/kg | mL/kg x100       | Mandatory Tidal Volume, Normalized    |
| *Vdel       | L x100,000,000   | Machine Delivered Volume              |
| Leak        | %                | (Vti - Vte)/Vti x100                  |
| Ve          | L x100           | Minute Volume                         |
| Ve/kg       | mL/kg            | Minute Volume, Normalized             |
| Spon Ve     | L x100           | Spontaneous Minute Volume             |
| Spon Ve/kg  | mL/kg            | Spontaneous Minute Volume, Normalized |
| Total Rate  | bpm              | Total Breath Rate                     |
| Spon Rate   | bpm              | Spontaneous Breath Rate               |
| Ti          | sec x100         | Inspiratory Time                      |
| Те          | sec x100         | Expiratory Time                       |
| †I:E        | unitless x10     | Inspiratory/Expiratory Time Ratio     |
| RSBI        | b2/min/L         | Rapid Shallow Breathing Index         |
| Ppeak       | cmH2O            | Peak Airway Pressure                  |
| Pmean       | cmH2O            | Mean Airway Pressure                  |
| Pplat       | cmH2O            | Plateau Pressure                      |
| PEEP        | cmH2O            | Positive End Expiratory Pressure      |
| Pair        | psig             | Air Supply Pressure                   |
| PO2         | psig             | Oxygen Supply Pressure                |
| FiO2        | %                | Fractional Inspiratory Oxygen         |
| Cdyn        | mL/cmH2O x100    | Dynamic System Compliance             |
| Cdyn/kg     | mL/cmH2O/kg x100 | Dynamic System Compliance, Normalized |
| Cstat       | mL/cmH2O x100    | Static System Compliance              |
| Cstat/kg    | mL/cmH2O/kg x100 | Static System Compliance, Normalized  |
| C/C20       | unitless x100    | Compliance ratio                      |
| Rrs         | cmH2O/L/sec x100 | Respiratory System Resistance         |
| PIFR        | L/min x10        | Peak Inspiratory Flow Rate            |
| PEFR        | L/min x10        | Peak Expiratory Flow Rate             |

| D: Data Communication Pr | rotocol A                  | VEA Ventilator Systems           |                             | 189                |
|--------------------------|----------------------------|----------------------------------|-----------------------------|--------------------|
| Body Size:               | 20 words (80 bytes<br>(*). | s). Each field, signed 10        | 6-bit integer, little endia | n, except as noted |
|                          | * signed 32-bit inte       | ger; little endian.              |                             |                    |
| Value:                   | Per definition, exce       | ept as noted (†)                 |                             |                    |
|                          | †For field value x: i      | if $x \ge 0$ , I:E = " x : 1"; c | otherwise I:E = "1:   x     | п                  |
| Alarm and Statu          | is Data                    |                                  |                             |                    |
| 1st                      |                            | 1                                |                             | 8th                |
| State Alarms             | Activity   Connect         | Inop Faults   Alert Fa           | aults   Log Faults   Ho     | urs                |
| Pady Siza:               | 9 words (22 bytes)         | , and field and holow            |                             |                    |
| Value.                   | N/A                        |                                  |                             |                    |
| value.                   | 14/7 .                     |                                  |                             |                    |
| State                    |                            |                                  |                             |                    |
| Definition:              | Ventilator operating       | g State.                         |                             |                    |
| Size:                    | Four (4) bytes; uns        | igned 32-bit integer; litt       | le endian.                  |                    |
| Value:                   | STARTING                   |                                  | 0                           |                    |
|                          | SERVICE                    |                                  | 1                           |                    |
|                          | DIAGNOSTIC                 |                                  | 2                           |                    |
|                          | NORMAL                     |                                  | 3                           |                    |
|                          | STANDBY                    |                                  | 4                           |                    |
|                          | POWERDOWN                  |                                  | 5                           |                    |
| Alarms                   |                            |                                  |                             |                    |
| Definition:              | Vent Inop                  |                                  | Bit 0                       |                    |
|                          | Loss of Gas                |                                  | Bit 1                       |                    |
|                          | Circuit Disconn            | ect                              | Bit 2                       |                    |
|                          | Ext High Ppeak             |                                  | Bit 3                       |                    |
|                          | Safety Valve               |                                  | Bit 4                       |                    |
|                          | High Ppeak                 |                                  | Bit 5                       |                    |
|                          | Apnea Interval             |                                  | Bit 6                       |                    |
|                          | Loss of O2                 |                                  | Bit 7                       |                    |
|                          | Loss of Air                |                                  | Bit 8                       |                    |
|                          | Loss of Heliox             |                                  | Bit 9                       |                    |
|                          | Low Battery                |                                  | Bit 10                      |                    |
|                          | Loss of A/C                |                                  | Bit 11                      |                    |
|                          | Low PEEP                   |                                  | Bit 12                      |                    |
|                          | Low Ppeak                  |                                  | Bit 13                      |                    |

|             | l ow \/to                            |                                      |  |
|-------------|--------------------------------------|--------------------------------------|--|
|             |                                      | Bit 14                               |  |
|             |                                      | Bit 15                               |  |
|             | Low FiO2                             | Bit 16                               |  |
|             | High FiO2                            | Bit 17                               |  |
|             | ILV Disconnect                       | Bit 18                               |  |
|             | Alarm Test                           | Bit 19                               |  |
|             | Invalid Gas ID                       | Bit 20                               |  |
|             | High Ve                              | Bit 21                               |  |
|             | High Rate                            | Bit 22                               |  |
|             | Insp Time Limit                      | Bit 23                               |  |
|             | I:E Limit                            | Bit 24                               |  |
|             | Fan Failure                          | Bit 25                               |  |
|             | High Vte                             | Bit 26                               |  |
|             | Volume Limit                         | Bit 27                               |  |
|             | Unused                               | Bit 28:31                            |  |
|             |                                      |                                      |  |
| Size:       | Four (4) bytes; unsigned 32-bit inte | ger; bitfield (0:31); little endian. |  |
| Value:      | Inactive 0                           |                                      |  |
|             | Active 1                             |                                      |  |
| Activity    |                                      |                                      |  |
| Definition: | Audible Alarm Silence                | Bit 0                                |  |
|             | Increase FiO2                        | Bit 1                                |  |
|             | Suction Procedure                    | Bit 2                                |  |
|             | Nebulizer                            | Bit 3                                |  |
|             | Compressor                           | Bit 4                                |  |
|             | AAC                                  | Bit 5                                |  |
|             | Vsync                                | Bit 6                                |  |
|             | Machine Volume                       | Bit 7                                |  |
|             | Inspiratory Hold                     | Bit 8                                |  |
|             | Expiratory Hold                      | Bit 9                                |  |
|             | Manual Breath                        | Bit 10                               |  |
|             | Unused                               | Bit 11:31                            |  |
| 0.          |                                      |                                      |  |
| Size:       | Four (4) bytes; unsigned 32-bit inte | jer; dittield(U:31); little endian.  |  |
| value:      | INACTIVE U                           |                                      |  |
|             | Active 1                             |                                      |  |

AVEA Ventilator Systems

D: Data Communication Protocol

190

#### Connect

| Definition: |
|-------------|
|-------------|

| Inspiratory Flow Sensor   | Bit 0     |
|---------------------------|-----------|
| Expiratory Flow Sensor    | Bit 1     |
| Adult Wye Flow Sensor     | Bit 2     |
| Neonatal Wye Flow Sensor  | Bit 3     |
| Hotwire Wye Flow Sensor   | Bit 4     |
| Proximal Pressure Line    | Bit 5     |
| Esophageal Pressure Line  | Bit 6     |
| Tracheal Pressure Line    | Bit 7     |
| Heliox Gas ID             | Bit 8     |
| Compressor                | Bit 9     |
| Extended Pressure Monitor | Bit 10    |
| Unused                    | Bit 11:31 |

| Size: | Four (4) bytes; | unsigned | 32-bit integer; | bitfield(0:31); | little endian. |
|-------|-----------------|----------|-----------------|-----------------|----------------|
|-------|-----------------|----------|-----------------|-----------------|----------------|

| Value: | Not Detected/Not Ready | 0 |
|--------|------------------------|---|
|--------|------------------------|---|

Connected/Ready

1

#### Inop Faults

| Definition:            | Dit 0  |
|------------------------|--------|
| Fileumatics module FTC | DILU   |
| HSSC Comm Fault        | Bit 1  |
| IFS Voltage Fault      | Bit 2  |
| TCA A/D Ref Fault      | Bit 3  |
| IFS A/D Ref Fault      | Bit 4  |
| FCV Overcurrent Fault  | Bit 5  |
| DPRAM Comm Error, Mntr | Bit 6  |
| DPRAM Comm Error, Ctrl | Bit 7  |
| Data Error, TCA        | Bit 8  |
| Bad Cal, EFS PT        | Bit 9  |
| Bad Cal, Insp PT       | Bit 10 |
| Bad Cal, Exp PT        | Bit 11 |
| Data Error, Blender    | Bit 12 |
| Bad Cal, Blender       | Bit 13 |
| Data Error, Air Sup PT | Bit 14 |
| Bad Cal, Air Sup PT    | Bit 15 |
| Data Error, O2 Sup PT  | Bit 16 |
| Bad Cal, O2 Sup PT     | Bit 17 |

| Data Error, BG PT     | Bit 18 |
|-----------------------|--------|
| Bad Cal, BG PT        | Bit 19 |
| Device Not Found, IFS | Bit 20 |
| Header Error, IFS     | Bit 21 |
| Data Error, IFS       | Bit 22 |
| Bad ID, IFS           | Bit 23 |
| Bad Cal, IFS          | Bit 24 |
| Device Not Found, EFS | Bit 25 |
| Header Error, EFS     | Bit 26 |
| Data Error, EFS       | Bit 27 |
| Bad ID, EFS           | Bit 28 |
| Bad Cal, EFS          | Bit 29 |
| Bad Cal, FCV          | Bit 30 |
| Unused                | Bit 31 |
|                       |        |

Size: Four (4) bytes; unsigned 32-bit integer; bitfield(0:31); little endian.

1

| Value: Inactive |        | 0 |
|-----------------|--------|---|
|                 | Active |   |

#### Alert Faults

Definition:

| Bad Model Number Bit 0   |        |
|--------------------------|--------|
| Bad Cal, FiO2            | Bit 1  |
| Header Error, Compressor | Bit 2  |
| Data Error, Compressor   | Bit 3  |
| Bad Cal, Compressor      | Bit 4  |
| Invalid Feature, EPM     | Bit 5  |
| Header Error, EPM        | Bit 6  |
| Data Error, EPM          | Bit 7  |
| Bad Cal, WFS PT          | Bit 8  |
| Bad Cal, Esoph PT        | Bit 9  |
| Bad Cal, Aux PT          | Bit 10 |
| Bad Sensor Type, HWFS    | Bit 11 |
| Header Error, HWFS       | Bit 12 |
| Data Error, HWFS         | Bit 13 |
| Bad ID, HWFS             | Bit 14 |
| Bad Cal, HWFS            | Bit 15 |
| Header Error, WFS        | Bit 16 |

| Data Error, WFS                | Bit 17    |
|--------------------------------|-----------|
| Bad ID, WFS                    | Bit 18    |
| Bad Cal, WFS                   | Bit 19    |
| Settings Lost                  | Bit 20    |
| Config Lost                    | Bit 21    |
| Insp Temperature Error         | Bit 22    |
| Exp Temperature Error          | Bit 23    |
| Compressor Rotor Locked        | Bit 24    |
| Compressor Output Low          | Bit 25    |
| Esoph Balloon Leak Test Failed | Bit 26    |
| Bad AutoZero, IFS              | Bit 27    |
| Bad AutoZero, EFS              | Bit 28    |
| Bad AutoZero, WFS              | Bit 29    |
| Unused                         | Bit 30:31 |

Size: Four (4) bytes; unsigned 32-bit integer; bitfield(0:31); little endian.

Value: Inactive 0

Active

1

#### Log Faults

Definition:

| Bad ID, Ctrl PCB              | Bit 0  |
|-------------------------------|--------|
| Header Error, Ctrl PCB        | Bit 1  |
| Bad ID, TCA                   | Bit 2  |
| Header Error, TCA             | Bit 3  |
| Bad ID, Power PCB             | Bit 4  |
| Header Error, Power PCB       | Bit 5  |
| Bad ID, Blender               | Bit 6  |
| Header Error, Blender         | Bit 7  |
| Bad ID, Air Supply PT         | Bit 8  |
| Header Error, Air Sup PT      | Bit 9  |
| Bad ID, O2 Supply PT          | Bit 10 |
| Header Error, O2 Sup PT       | Bit 11 |
| Bad ID, BG PT                 | Bit 12 |
| Bad Header, BG PT             | Bit 13 |
| Trend Data Lost               | Bit 14 |
| Event Log Data Lost           | Bit 15 |
| Compressor Runtime Data Error | Bit 16 |

Bit 17:31

Unused

| Size:       | Four (4) bytes;  | unsigned 32-bit integer; bitfield(0:31); little endian. |
|-------------|------------------|---------------------------------------------------------|
| Value:      | Inactive         | 0                                                       |
|             | Active           | 1                                                       |
| Hours       |                  |                                                         |
| Definition: | Total hours of v | rentilator operation.                                   |

Size: Four (4) bytes; unsigned 32-bit integer; little endian.

Value: Per definition, Hours x100.

### Scalar (Waveform) Data

| ScalarData[10] |  |
|----------------|--|
| Scala Data[10] |  |

Body Size:60 words (240 bytes); each block see below.Value:N/A.

### Each ScalarData[n] contains:

|         | 1st        |           |          |            |         |            |           |                | -            |    |    | 12th     |
|---------|------------|-----------|----------|------------|---------|------------|-----------|----------------|--------------|----|----|----------|
|         | Metrics    | Paw       | Pinsp    | Flow       | Vol     | Pes        | Ptr       | Fexp           | Finsp        | A0 | A1 | Reserved |
|         |            |           |          |            |         |            |           |                |              |    |    |          |
|         | Block Siz  | ze:       | 24 bytes | ; each fie | eld se  | e below.   |           |                |              |    |    |          |
|         | Value:     |           | N/A.     |            |         |            |           |                |              |    |    |          |
|         | Metrics    |           |          |            |         |            |           |                |              |    |    |          |
|         |            | F         |          | 15:7       |         | 6:5        | 4:3       | 2:0            |              |    |    |          |
|         |            |           | Re       | served     |         | Trigger    | Туре      | Phase          |              |    |    |          |
|         |            |           |          |            |         |            |           |                |              |    |    |          |
|         | Definitior | า:        | Metrics  | pertaining | g to so | calar data | 1.        |                |              |    |    |          |
|         | Size:      |           | Two (2)  | bytes; ur  | nsigne  | d 16-bit i | nteger (  | (bitfield); li | ittle endiar | 1. |    |          |
| _       | Value:     |           | N/A.     |            |         |            |           |                |              |    |    |          |
| Reserve | ed         |           |          |            |         |            |           |                |              |    |    |          |
|         |            | Definitio | on:      | Reserve    | ed for  | manufac    | turer's u | ise.           |              |    |    |          |
|         |            | Size:     |          | 9 bits; b  | itfield | 7:15.      |           |                |              |    |    |          |
|         | Value:     |           | N/A.     |            |         |            |           |                |              |    |    |          |
|         |            | Trigger   |          |            |         |            |           |                |              |    |    |          |
|         |            | Definitio | on:      | Breath 7   | Trigge  | r Source   |           |                |              |    |    |          |
|         |            |           |          |            |         |            |           |                |              |    |    |          |

| ata Communication Protocol |                 | tocol AVEA Ventilator                                            | Systems                   | 195 |
|----------------------------|-----------------|------------------------------------------------------------------|---------------------------|-----|
|                            | Size:           | 2 bits; bitfield 5:6.                                            |                           |     |
|                            | Value:          | PATIENT                                                          | 0                         |     |
|                            |                 | VENTILATOR                                                       | 1                         |     |
|                            | Tvpe            |                                                                  |                           |     |
|                            | Definition      | : Breath Type.                                                   |                           |     |
|                            | Size:           | 2 bits: bitfield 3:4                                             |                           |     |
|                            | Value:          | NOT SPECIFIED                                                    | 0                         |     |
|                            | value.          | SPONANEOUS                                                       | 1                         |     |
|                            |                 |                                                                  | 1<br>2                    |     |
|                            |                 |                                                                  | 2                         |     |
|                            | Phase           | SFECIAL                                                          | 5                         |     |
|                            | Definition      | : Breath Phase.                                                  |                           |     |
|                            | Size:           | 3 bits: bitfield 0:2.                                            |                           |     |
|                            | Value:          | NOT SPECIFIED                                                    | 0                         |     |
|                            |                 | INSPIRATORY                                                      | 1                         |     |
|                            |                 | EXPIRATORY                                                       | 2                         |     |
|                            |                 |                                                                  | -<br>3                    |     |
|                            |                 |                                                                  | 4                         |     |
| Daw D                      | inen Flow       | Vol Dos Dtr Eovn Einen AO                                        | -<br>Λ1                   |     |
| Definiti                   | on <sup>.</sup> | voi, r es, r u, r exp, r ilisp, Av,                              |                           |     |
| Demma                      | Paw             | cmH2O x100                                                       | Airway Pressure           |     |
|                            | Pinsp           | cmH2O x100                                                       | Inspiratory Pressure      |     |
|                            | Flow            | L/min x100                                                       | Airway Flow               |     |
|                            | Vol             | L x10000                                                         | Tidal Volume              |     |
|                            | Pes             | cmH2O x100                                                       | Esophageal Pressure       |     |
|                            | Ptr             | cmH2O x100                                                       | Tracheal Pressure         |     |
|                            | Fexp            | L/min x100                                                       | Expiratory Sensor Flow    |     |
|                            | Finsp           | L/min x100                                                       | Inspiratory Sensor Flow   |     |
|                            | A0              | mV                                                               | Analog Input Channel Zero |     |
|                            | A1              | mV                                                               | Analog Input Channel One  |     |
| Size:                      | Each field      | Each field, Two (2) bytes; signed 16-bit integer; little endian. |                           |     |
| Value:                     | Per defini      | tion.                                                            |                           |     |
| Reserv                     | ved             |                                                                  |                           |     |
| Definition                 | on: I           | Reserved for manufacturer's use                                  |                           |     |
| Size:                      | -               | Two (2) bytes; signed 16-bit integ                               | ger; little endian.       |     |
| Value:                     | I               | N/A.                                                             |                           |     |

# **Exchange Protocol**

The following describes several typical transaction sequences for this protocol. Others are possible, but are analogous to or extensions of those presented.

|                                                         | Host                                                      | Ventilator                                |
|---------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|
| Service<br>Request                                      | ServiceRequest()                                          | stReply()                                 |
| Data<br>Request,<br>Monitors                            | ServiceRequest()                                          | hitors()                                  |
| Service<br>Request,<br>Data as<br>Available,<br>Scalars | ServiceRequest() ServiceReques RealTime RealTime RealTime | tReply()<br>eData()<br>eData()<br>eData() |

## Default

The default transmission mode for all data types is "By Request".

## **Disabled State**

All data transmission may be disabled under certain circumstances, for example, if an alternate data channel (MIB) is selected for communication. In this case, all Service

Requests will be replied with a failure message.

## Service Request

This type of transaction sets the transmission characteristics. A Service Request message is sent from the host and is replied to from the ventilator with a Service Request Reply.

The reply indicates success or failure of the request.

# Data Request

This type of transaction asks for data to be sent to the host. A Service Request message is sent from the host and is replied to from the ventilator with a packet of data of the type requested, or if the request cannot be satisfied, a Service Request Reply indicating failure. One packet of data is sent per request.

## Data as Available

Once a successful Service Request to change transmission mode to "As Available" has been received by the ventilator, data will be sent to the host as new data becomes available without further requests from the host. Each data type available must have an individual request for the transmission mode to be changed. Settings data types may not be set to "As Available" and must be requested by the host each time they are required. For reference only, approximate data rates for each type are as follows:

- Monitors: End of each breath cycle, or 10 seconds, whichever comes first.
- Alarms/Status: 250ms intervals
- Scalars: 100ms intervals

# Glossary

| Breath Interval     | Elapsed time from the start of one breath to the start of the next.                                                                                                                                                                                                                                                                        |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preset              | An operator set ventilator parameter.                                                                                                                                                                                                                                                                                                      |
| Trigger             | Value at which the ventilator initiates delivery of a breath as a result of measured patient effort.                                                                                                                                                                                                                                       |
| BTPS                | Body Temperature at Ambient Pressure, Saturated.                                                                                                                                                                                                                                                                                           |
| ATPD                | Ambient Temperature, Ambient Pressure, Dry.                                                                                                                                                                                                                                                                                                |
| Demand Flow         | The flow generated by the ventilator to meet the patient's flow demand in order to maintain PEEP at the preset level.                                                                                                                                                                                                                      |
| DVM                 | Digital Volt Meter                                                                                                                                                                                                                                                                                                                         |
| PEEP                | Positive End Expiratory Pressure.                                                                                                                                                                                                                                                                                                          |
| AC                  | Alternating Current (mains electricity).                                                                                                                                                                                                                                                                                                   |
| Bias Flow           | A continuous flow through the patient breathing circuit. The level of Bias Flow can be set from .4 to 5 L/min                                                                                                                                                                                                                              |
| Bpm                 | Breaths per minute.                                                                                                                                                                                                                                                                                                                        |
| Breath Period       | The length of time between machine-initiated breaths. Depends on the Breath Rate setting and is computed by dividing 60 seconds by the Breath Rate setting. When the Breath Rate setting is 15 bpm, for example, the breath period is four seconds (i.e., 60 / 15). In this example, the ventilator initiates a breath every four seconds. |
| Breath Rate         | The number of breaths delivered in a minute.                                                                                                                                                                                                                                                                                               |
| BTPD                | Body Temperature at Ambient Pressure, Dry                                                                                                                                                                                                                                                                                                  |
| Button              | A push button switch used to toggle a function on or off.                                                                                                                                                                                                                                                                                  |
| cmH2O               | Centimeters of water pressure.                                                                                                                                                                                                                                                                                                             |
| Controls            | Any button, switch, or knob that allows you to modify the ventilator's behavior.                                                                                                                                                                                                                                                           |
| Event               | An anomalous condition that occurs during ventilator operation.                                                                                                                                                                                                                                                                            |
| Flow                | The rate at which gas is delivered. Measured in liters per minute (L/min).                                                                                                                                                                                                                                                                 |
| Indicators          | A visual element showing operational status.                                                                                                                                                                                                                                                                                               |
| L                   | Liters. A unit of volume.                                                                                                                                                                                                                                                                                                                  |
| LED                 | Light Emitting Diode                                                                                                                                                                                                                                                                                                                       |
| L/min               | Liters per minute. A unit of flow.                                                                                                                                                                                                                                                                                                         |
| Mode                | An operating state of the ventilator that determines the allowable breath types.                                                                                                                                                                                                                                                           |
| Monitored Parameter | A measured value displayed in the monitor window.                                                                                                                                                                                                                                                                                          |

| 02                            | Oxygen                                                                                                                                                                                                                        |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Patient Breathing Circuit     | The tubing that provides the ventilatory interface between the patient and ventilator.                                                                                                                                        |
| Paw                           | Airway Pressure. Measured in cmH2O at the exhalation valve.                                                                                                                                                                   |
| PEEP                          | See Positive End Expiratory Pressure.                                                                                                                                                                                         |
| PIP                           | Peak Inspiratory Pressure . Shows the highest circuit pressure to occur during inspiration as measured at the exhalation valve. The display is updated at the end of inspiration. PIP is not updated for spontaneous breaths. |
| Pplat                         | Plateau Pressure. Measured during an Inspiratory Hold maneuver.<br>Used to calculate Static Compliance. (Cst).                                                                                                                |
| PSIG                          | Pounds per square inch gauge. 1 PSIG = .07bar                                                                                                                                                                                 |
| Sigh Breath                   | A Volume Controlled machine breath having a tidal volume equal to one-and-a-half times (150%) of the current tidal volume setting.                                                                                            |
| User Verification Tests (UVT) | A group of tests to check ventilator performance prior to connecting the ventilator to a patient.                                                                                                                             |
| WOB                           | Patient Work of Breathing i.e. a measure of Patient Effort.                                                                                                                                                                   |

# Index

#### A

accumulator  $\cdot$  37, 89 air inlet fitting  $\cdot$ alarm *vent inop*  $\cdot$ alarm speaker  $\cdot$ annual service  $\cdot$ 

#### B

back light inverter  $\cdot$  33 bias flow  $\cdot$  199 breath types  $\cdot$  199

# С

calibration compressor  $\cdot$ O2 blender  $\cdot$ calibration O2 sensor  $\cdot$ cautions  $\cdot$ compressor filters  $\cdot$ compressor system  $\cdot$ contacting the manufacturer  $\cdot$ control PCB  $\cdot$ customer service  $\cdot$ 

### D

DC voltage · 139 DRAM · 33 drawings and schematics · 165 driver transition board · 85

## E

enhanced patient monitoring PCB  $\cdot$ error log  $\cdot$ exhalation filter  $\cdot$ exhalation valve assembly  $\cdot$ exhalation valve body  $\cdot$  exhalation valve membrane  $\cdot$  135 external 17 Ah lead acid batteries  $\cdot$  35

#### F

fan  $\cdot$ flash memory  $\cdot$ flow control system  $\cdot$ flow sensor  $\cdot$ 

#### G

gas delivery engine · 36 block diagram · 36 gas delivery engine parts list · 156

## Η

heated expiratory system  $\cdot$  38 heliox delivery  $\cdot$  62, 63 hour meter  $\cdot$  37

#### I

inlet system · 36 internal NiMH batteries · 34

#### L

LCD · 32 LED · 32 liquid crystal display · 32

#### М

 $\begin{array}{c} membrane \ panel \cdot \ 32 \\ monitor \ CPU \cdot \ 33 \end{array}$ 

#### N

nebulizer ports · 88 nebulizer system · 39

#### 0

O2 sensor calibration  $\cdot$ operational verification test  $\cdot$ optical encoder  $\cdot$ ordering parts  $\cdot$ oxygen blender  $\cdot$ 

# P

parts list gas delivery engine · 156 top assembly · 160 parts replaced annually · 131 patient effort · 199 PEEP · 199, 200 pneumatics module · 34 power supply specifications · 79 power supply system · 35 power-on problems · 139 pressure transducers · 35

#### R

rear panel  $\cdot$  132 removal & installation accumulator · 89  $compressor \cdot 75$ driver transition board  $\cdot$  85 *EPM board*  $\cdot$  76 exhalation valve & flow sensor · 81 fan assembly  $\cdot$  77 gas delivery engine  $\cdot$  70 *internal batteries* · 73 power supply  $\cdot$  78 top cover micorswitch  $\cdot$  83 wheeled base  $\cdot$  73 removel exhalation filter/watertrap · 68 replace gas inlet filters · 132 replace O2 filter  $\cdot$  132 routine maintenance parts replaced annually · 131

#### S

safety information  $\cdot$  19 safety-over pressure system  $\cdot$  37 service calls · 163 specifications accessories · 176 atmospheric & environmental · 176 data input & output · 174 electrical · 173 physical dimensions · 176 pneumatic · 173 powersupply · 79 symbols · 22

# T

TCA PCB · 35 theory of operation detail design  $\cdot$  31 general  $\cdot 27$ high level design  $\cdot$  29 tools & equipment  $\cdot$  67 top level parts list · 160 touch screen  $\cdot$  32 transducer calibration  $\cdot$  117 air inlet pressure  $\cdot$  126 blended gas pressure · 127 expiratory flow · 124 expiratory pressure · 122 inspiratory pressure · 119 O2 inlet pressure · 125 wye flow sensor  $\cdot$  121 transformer · 139 troubleshooting · 139

#### U

UIM · 151 removal · 68

## V

vent inop · 139 vent inop alarm · 140 ventilator specifications · 173

# W

warnings  $\cdot$  19